• 제목/요약/키워드: quasi-class A

검색결과 179건 처리시간 0.026초

A STRUCTURE OF NONCENTRAL IDEMPOTENTS

  • Cho, Eun-Kyung;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Seo, Yeon Sook
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.25-40
    • /
    • 2018
  • We focus on the structure of the set of noncentral idempotents whose role is similar to one of central idempotents. We introduce the concept of quasi-Abelian rings which unit-regular rings satisfy. We first observe that the class of quasi-Abelian rings is seated between Abelian and direct finiteness. It is proved that a regular ring is directly finite if and only if it is quasi-Abelian. It is also shown that quasi-Abelian property is not left-right symmetric, but left-right symmetric when a given ring has an involution. Quasi-Abelian property is shown to do not pass to polynomial rings, comparing with Abelian property passing to polynomial rings.

Asymmetric robust quasi-likelihood

  • Lee, Yoon-Dong;Choi, Hye-Mi
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.109-112
    • /
    • 2005
  • The robust quasi-likelihood (RQL) proposed by Cantoni & Ronchetti (2001) is a robust version of quasi-likelihood. They adopted Huber function to increase the resistance of the RQL estimator to the outliers. They considered the Huber function only of symmetric type. We extend the class of Huber function to include asymmetric types, and derived a method to find the optimal asymmetric one.

  • PDF

ON QUASI-CLASS A OPERATORS

  • Kim, In Hyoun;Duggal, B.P.;Jeon, In Ho
    • Korean Journal of Mathematics
    • /
    • 제19권2호
    • /
    • pp.205-209
    • /
    • 2011
  • Let $\mathcal{QA}$ denote the class of bounded linear Hilbert space operators T which satisfy the operator inequality $T^*|T^2|T{\geq}T^*|T|^2T$. Let $f$ be an analytic function defined on an open neighbourhood $\mathcal{U}$ of ${\sigma}(T)$ such that $f$ is non-constant on the connected components of $\mathcal{U}$. We generalize a theorem of Sheth [10] to $f(T){\in}\mathcal{QA}$.

Sensitivity Analysis for Generalized Nonlinear Implicit Quasi-variational Inclusions

  • Jeong, Jae Ug
    • Kyungpook Mathematical Journal
    • /
    • 제46권3호
    • /
    • pp.345-356
    • /
    • 2006
  • In this paper, by using the concept of the resolvent operator, we study the behavior and sensitivity analysis of the solution set for a new class of parametric generalized nonlinear implicit quasi-variational inclusion problem in $L_p(p{\geq}2)$ spaces. The results presented in this paper are new and generalize many known results in this field.

  • PDF

ON GENERALIZED VECTOR QUASI-VARIATIONAL TYPE INEQUALITIES

  • Cho, Y.J.;Salahuddin, Salahuddin;Ahmad, M.K.
    • East Asian mathematical journal
    • /
    • 제26권1호
    • /
    • pp.49-58
    • /
    • 2010
  • In this paper, we consider and study a new class of generalized vector quasi-variational type inequalities and obtain some existence theorems for both under compact and noncompact assumptions in topological vector spaces without using monotonicity. For the noncompact case, we use the concept of escaping sequences.

QUASI m-CAYLEY STRONGLY REGULAR GRAPHS

  • Kutnar, Klavdija;Malnic, Aleksander;Martinez, Luis;Marusic, Dragan
    • 대한수학회지
    • /
    • 제50권6호
    • /
    • pp.1199-1211
    • /
    • 2013
  • We introduce a new class of graphs, called quasi $m$-Cayley graphs, having good symmetry properties, in the sense that they admit a group of automorphisms G that fixes a vertex of the graph and acts semiregularly on the other vertices. We determine when these graphs are strongly regular, and this leads us to define a new algebro-combinatorial structure, called quasi-partial difference family, or QPDF for short. We give several infinite families and sporadic examples of QPDFs. We also study several properties of QPDFs and determine, under several conditions, the form of the parameters of QPDFs when the group G is cyclic.

STRUCTURAL AND SPECTRAL PROPERTIES OF k-QUASI-*-PARANORMAL OPERATORS

  • ZUO, FEI;ZUO, HONGLIANG
    • Korean Journal of Mathematics
    • /
    • 제23권2호
    • /
    • pp.249-257
    • /
    • 2015
  • For a positive integer k, an operator T is said to be k-quasi-*-paranormal if ${\parallel}T^{k+2}x{\parallel}{\parallel}T^kx{\parallel}{\geq}{\parallel}T^*T^kx{\parallel}^2$ for all x $\in$ H, which is a generalization of *-paranormal operator. In this paper, we give a necessary and sufficient condition for T to be a k-quasi-*-paranormal operator. We also prove that the spectrum is continuous on the class of all k-quasi-*-paranormal operators.

A KIND OF NORMALITY RELATED TO REGULAR ELEMENTS

  • Huang, Juan;Piao, Zhelin
    • 호남수학학술지
    • /
    • 제42권1호
    • /
    • pp.93-103
    • /
    • 2020
  • This article concerns a property of Abelain π-regular rings. A ring R shall be called right quasi-DR if for every a ∈ R there exists n ≥ 1 such that C(R)an ⊆ aR, where C(R) means the monoid of regular elements in R. The relations between the right quasi-DR property and near ring theoretic properties are investigated. We next show that the class of right quasi-DR rings is quite large.

GENERALIZED SET-VALUED MIXED NONLINEAR QUASI VARLIATIONAL INEQUALITIES

  • H, M-U
    • Journal of applied mathematics & informatics
    • /
    • 제5권1호
    • /
    • pp.73-90
    • /
    • 1998
  • In this paper we introduce and study a number of new classes of quasi variational inequalities. using essentially the projection technique and its variant forms we prove that the gen-eralized set-valued mixed quasivariational inequalities are equivalent to the fixed point problem and the Wiener-Hopf equations(normal maps). This equivalence enables us to suggest a number of iterative algorithms solving the generalized variational inequalities. As a special case of the generalized set-valued mixed quasi variational in-equalities we obtain a class of quasi variational inequalities studied by Siddiqi Husain and Kazmi [35] but there are several inaccuracies in their formulation of the problem the statement and the proofs of the problem the statement and the proofs of their results. We have removed these inaccuracies. The correct formulation of thir results can be obtained as special cases from our main results.

ON THE LEET INVERSIVE SEMIRING CONGRUENCES ON ADDITIVB REGULAR SEMIRINGS

  • SEN M. K.;BHUNIYA A. K.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제12권4호
    • /
    • pp.253-274
    • /
    • 2005
  • An additive regular Semiring S is left inversive if the Set E+ (S) of all additive idempotents is left regular. The set LC(S) of all left inversive semiring congruences on an additive regular semiring S is a lattice. The relations $\theta$ and k (resp.), induced by tr. and ker (resp.), are congruences on LC(S) and each $\theta$-class p$\theta$ (resp. each k-class pk) is a complete modular sublattice with $p_{min}$ and $p_{max}$ (resp. With $p^{min}$ and $p^{max}$), as the least and greatest elements. $p_{min},\;p_{max},\;p^{min}$ and $p^{max}$, in particular ${\epsilon}_{max}$, the maximum additive idempotent separating congruence has been characterized explicitly. A semiring is quasi-inversive if and only if it is a subdirect product of a left inversive and a right inversive semiring.

  • PDF