DOI QR코드

DOI QR Code

ON GENERALIZED VECTOR QUASI-VARIATIONAL TYPE INEQUALITIES

  • Cho, Y.J. (DEPARTMENT OF MATHEMATICS EDUCATION AND THE RINS GYEONGSANG NATIONAL UNIVERSITY) ;
  • Salahuddin, Salahuddin (DEPARTMENT OF MATHEMATICS ALIGARH MUSLIM UNIVERSITY) ;
  • Ahmad, M.K. (DEPARTMENT OF MATHEMATICS ALIGARH MUSLIM UNIVERSITY)
  • Received : 2009.08.10
  • Accepted : 2009.09.24
  • Published : 2010.01.31

Abstract

In this paper, we consider and study a new class of generalized vector quasi-variational type inequalities and obtain some existence theorems for both under compact and noncompact assumptions in topological vector spaces without using monotonicity. For the noncompact case, we use the concept of escaping sequences.

Keywords

References

  1. J. P. Aubin, Mathematical Methods of Game and Economic Theory, North Holland, Amsterdam, 1979.
  2. C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities, Applications to Free Boundary Problems, John Wiley, New York, 1984.
  3. A. Bensoussan and J. L. Lions, Nouvelle formulation des problemes de controle implu-sionnel et applications, Comp. Rend. de L'Acad. des Sci. Paris 276 (1973), 1189-1192.
  4. K. C. Border, Fix Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, Cambridge, 1985.
  5. S. S. Chang, H. B. Thompson and X. Z. Yuan, The existence theorems of solutions for generalized vector variational like inequalities, Comput. Math. Appl. 37(1999), 1-9.
  6. G. Y. Chen, Existence of solutions for a vector variational inequality, an expulsion of the Hartman-Stampacchia theorem, J. Optim. Theory Appl. 74 (1992), 445-456. https://doi.org/10.1007/BF00940320
  7. G. Y. Chen and G. M. Cheng, Vector variational inequality and vector optimization problem: In Lecture Notes in Econ. and Math. System 285, Springer-Verlag, 1987,408-416.
  8. X. P. Ding, W. K. Kim and K. K. Tan, Equilibria of noncompact generalized game with L^{\ast}-majorized preferences, J. Math. Anal. Appl. 164 (1992), 508-517. https://doi.org/10.1016/0022-247X(92)90130-6
  9. X. P. Ding, W. K. Kim and K. K. Tan, Equilibria of generalized games with L-majorized correspondences, Internat. J. Math. Math. Sci. 17 (1994), 783-790. https://doi.org/10.1155/S0161171294001092
  10. X. P. Ding and E. Trafdar, Generalized variational like inequalities with pseudomonotone set-valued mappings, Arch. Math. 74 (2000), 302-313. https://doi.org/10.1007/s000130050447
  11. F. Giannessi, Theorems of Alternative, Quadratic Programs and Complementarity Problems, Edited by R. W. Cottle, F. Giannessi and J. L. Lions, John Wiley and Sons, New York, 1980.
  12. F. Giannessi, Vector Variational Inequalities and Vector Equilibria Mathematical Theories, Kluwer Academic Publishers, Dordrecht, Holland, 2000.
  13. P. Hartman and G. Stampacchia, On some nonlinear elliptic differential function equations, Acta Math. 115 (1966), 271-310. https://doi.org/10.1007/BF02392210
  14. W. K. Kim and K. K. Tan, On generalized vector quasi-variational inequalities, Optimization 46 (1999), 185-198. https://doi.org/10.1080/02331939908844451
  15. I. V. Konnov and J. C. Yao, On the generalized vector variational inequality problem, J. Math. Anal. Appl. 206 (1997), 42-58. https://doi.org/10.1006/jmaa.1997.5192
  16. B. S. Lee, G. M. Lee and D. S. Kim, Generalized vector variational like inequalities in locally convex Hausdorff topological vector spaces, Indian J. Pure Appl. Math. 28 (1997), 33-41.
  17. D. T. Luc, Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems 319, Springer-Verlag, Berlin, 1989.
  18. S. K. Mishra and S. Y. Wang, Vector variational-like inequalities and nonsmooth vector optimization problems, Nonlinear Analysis 64 (2006), 1939-1945. https://doi.org/10.1016/j.na.2005.07.030
  19. J. Panda, M. Sahoo and A. Kumar, A variational like inequality problem, Bull. Aust. Math. Soc. 39 (1989), 225-231. https://doi.org/10.1017/S0004972700002690
  20. J. W. Peng and X. M. Yang, Generalized vector quasivariational-like inequalities, J Ineq. Appl. (2006), Article ID 59387, 1-11.
  21. L. B. dos Santos, Some relations between variational-like inequality problems and variational optimization problem in Banach Spaces, Comp. Math. Appl. 55 (2008), no. 8,1808-1814. https://doi.org/10.1016/j.camwa.2007.08.028
  22. H. M. Shih and K. K. Tan, Generalized quasi-variational inequalities in locally convex topological vector spaces, J. Math. Anal. Appl. 108 (1985), 333-343. https://doi.org/10.1016/0022-247X(85)90029-0
  23. Y. B. Xiao and N. J. Huang, Generalized quasi-variational-like hemivariational inequal- ities, Nonlinear Analysis (2007) doi: 10.1016/J.na.2007.06.011.
  24. S. J. Yu and J. C. Yao, On vector variational inequalities, J. Optim. Theory Appl. 89(1996), 769-799.
  25. X. Z. Yuan, G. Isac, K. K. Tan and J. Yu, The study of minimax inequalities, abstract economics and applications to variational inequalities and Nash equilibria, Acta Appl. Math. 54 (1998), 135-166. https://doi.org/10.1023/A:1006095413166