References
- J. P. Aubin, Mathematical Methods of Game and Economic Theory, North Holland, Amsterdam, 1979.
- C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities, Applications to Free Boundary Problems, John Wiley, New York, 1984.
- A. Bensoussan and J. L. Lions, Nouvelle formulation des problemes de controle implu-sionnel et applications, Comp. Rend. de L'Acad. des Sci. Paris 276 (1973), 1189-1192.
- K. C. Border, Fix Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, Cambridge, 1985.
- S. S. Chang, H. B. Thompson and X. Z. Yuan, The existence theorems of solutions for generalized vector variational like inequalities, Comput. Math. Appl. 37(1999), 1-9.
- G. Y. Chen, Existence of solutions for a vector variational inequality, an expulsion of the Hartman-Stampacchia theorem, J. Optim. Theory Appl. 74 (1992), 445-456. https://doi.org/10.1007/BF00940320
- G. Y. Chen and G. M. Cheng, Vector variational inequality and vector optimization problem: In Lecture Notes in Econ. and Math. System 285, Springer-Verlag, 1987,408-416.
-
X. P. Ding, W. K. Kim and K. K. Tan, Equilibria of noncompact generalized game with
L^{\ast} -majorized preferences, J. Math. Anal. Appl. 164 (1992), 508-517. https://doi.org/10.1016/0022-247X(92)90130-6 - X. P. Ding, W. K. Kim and K. K. Tan, Equilibria of generalized games with L-majorized correspondences, Internat. J. Math. Math. Sci. 17 (1994), 783-790. https://doi.org/10.1155/S0161171294001092
- X. P. Ding and E. Trafdar, Generalized variational like inequalities with pseudomonotone set-valued mappings, Arch. Math. 74 (2000), 302-313. https://doi.org/10.1007/s000130050447
- F. Giannessi, Theorems of Alternative, Quadratic Programs and Complementarity Problems, Edited by R. W. Cottle, F. Giannessi and J. L. Lions, John Wiley and Sons, New York, 1980.
- F. Giannessi, Vector Variational Inequalities and Vector Equilibria Mathematical Theories, Kluwer Academic Publishers, Dordrecht, Holland, 2000.
- P. Hartman and G. Stampacchia, On some nonlinear elliptic differential function equations, Acta Math. 115 (1966), 271-310. https://doi.org/10.1007/BF02392210
- W. K. Kim and K. K. Tan, On generalized vector quasi-variational inequalities, Optimization 46 (1999), 185-198. https://doi.org/10.1080/02331939908844451
- I. V. Konnov and J. C. Yao, On the generalized vector variational inequality problem, J. Math. Anal. Appl. 206 (1997), 42-58. https://doi.org/10.1006/jmaa.1997.5192
- B. S. Lee, G. M. Lee and D. S. Kim, Generalized vector variational like inequalities in locally convex Hausdorff topological vector spaces, Indian J. Pure Appl. Math. 28 (1997), 33-41.
- D. T. Luc, Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems 319, Springer-Verlag, Berlin, 1989.
- S. K. Mishra and S. Y. Wang, Vector variational-like inequalities and nonsmooth vector optimization problems, Nonlinear Analysis 64 (2006), 1939-1945. https://doi.org/10.1016/j.na.2005.07.030
- J. Panda, M. Sahoo and A. Kumar, A variational like inequality problem, Bull. Aust. Math. Soc. 39 (1989), 225-231. https://doi.org/10.1017/S0004972700002690
- J. W. Peng and X. M. Yang, Generalized vector quasivariational-like inequalities, J Ineq. Appl. (2006), Article ID 59387, 1-11.
- L. B. dos Santos, Some relations between variational-like inequality problems and variational optimization problem in Banach Spaces, Comp. Math. Appl. 55 (2008), no. 8,1808-1814. https://doi.org/10.1016/j.camwa.2007.08.028
- H. M. Shih and K. K. Tan, Generalized quasi-variational inequalities in locally convex topological vector spaces, J. Math. Anal. Appl. 108 (1985), 333-343. https://doi.org/10.1016/0022-247X(85)90029-0
- Y. B. Xiao and N. J. Huang, Generalized quasi-variational-like hemivariational inequal- ities, Nonlinear Analysis (2007) doi: 10.1016/J.na.2007.06.011.
- S. J. Yu and J. C. Yao, On vector variational inequalities, J. Optim. Theory Appl. 89(1996), 769-799.
- X. Z. Yuan, G. Isac, K. K. Tan and J. Yu, The study of minimax inequalities, abstract economics and applications to variational inequalities and Nash equilibria, Acta Appl. Math. 54 (1998), 135-166. https://doi.org/10.1023/A:1006095413166