DOI QR코드

DOI QR Code

STRUCTURAL AND SPECTRAL PROPERTIES OF k-QUASI-*-PARANORMAL OPERATORS

  • ZUO, FEI (College of Mathematics and Information Science Henan Normal University) ;
  • ZUO, HONGLIANG (College of Mathematics and Information Science Henan Normal University)
  • Received : 2014.11.11
  • Accepted : 2015.06.02
  • Published : 2015.06.30

Abstract

For a positive integer k, an operator T is said to be k-quasi-*-paranormal if ${\parallel}T^{k+2}x{\parallel}{\parallel}T^kx{\parallel}{\geq}{\parallel}T^*T^kx{\parallel}^2$ for all x $\in$ H, which is a generalization of *-paranormal operator. In this paper, we give a necessary and sufficient condition for T to be a k-quasi-*-paranormal operator. We also prove that the spectrum is continuous on the class of all k-quasi-*-paranormal operators.

Keywords

References

  1. S.K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111-114. https://doi.org/10.1090/S0002-9939-1962-0133690-8
  2. J.B. Conway and B.B. Morrel, Operators that are points of spectral continuity, Integr. Equ. Oper. Theory 2 (1979), 174-198. https://doi.org/10.1007/BF01682733
  3. S.V. Djordjevic, Continuity of the essential spectrum in the class of quasihy-ponormal operators, Vesnik Math. 50 (1998), 71-74.
  4. B.P. Duggal, I.H. Jeon and I.H. Kim, Continuity of the spectrum on a class of upper triangular operator matrices, J. Math. Anal. Appl. 370 (2010), 584-587. https://doi.org/10.1016/j.jmaa.2010.04.068
  5. B.P. Duggal, I.H. Jeon and I.H. Kim, On *-paranormal contractions and properties for *- class A operators, Linear Algebra Appl. 436 (2012), 954-962. https://doi.org/10.1016/j.laa.2011.06.002
  6. D.R. Farenick and W.Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), 4153-4174. https://doi.org/10.1090/S0002-9947-96-01683-2
  7. P.R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1982.
  8. J.K. Han and H.Y. Lee, Invertible completions of 2 * 2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (1999), 119-123.
  9. Y.M. Han and A.H. Kim, A note on *-paranormal operators, Integr. Equ. Oper. Theory 49 (4) (2004), 435-444. https://doi.org/10.1007/s00020-002-1217-5
  10. S. Mecheri, On a new class of operators and Weyl type theorems, Filomat 27 (2013), 629-636. https://doi.org/10.2298/FIL1304629M
  11. S. Mecheri, On quasi-*-paranormal operators, Ann. Funct. Anal. 3 (1) (2012), 86-91. https://doi.org/10.15352/afa/1399900025
  12. I.S. Hwang and W.Y. Lee, On the continuity of spectra of Toeplitz operators, Arch. Math. 70 (1998), 66-73. https://doi.org/10.1007/s000130050166
  13. I.S. Hwang and W.Y. Lee, The spectrum is continuous on the set of p-hyponormal operators, Math. Z. 235 (2000), 151-157. https://doi.org/10.1007/s002090000128
  14. J.L. Shen and Alatancang, The spectrum properties of quasi-*-paranormal operators, Chinese Annals of Math.(in Chinese) 34 (6) (2013), 663-670.
  15. D. Xia, Spectral Theory of Hyponormal Operators, Birkhauser Verlag, Basel, Boston, 1983.

Cited by

  1. Expansion of paranormal operator vol.1188, pp.None, 2019, https://doi.org/10.1088/1742-6596/1188/1/012027