• Title/Summary/Keyword: quantitative roughness

검색결과 104건 처리시간 0.032초

Bond behaviour at concrete-concrete interface with quantitative roughness tooth

  • Ayinde, Olawale O.;Wu, Erjun;Zhou, Guangdong
    • Advances in concrete construction
    • /
    • 제13권3호
    • /
    • pp.265-279
    • /
    • 2022
  • The roughness of substrate concrete interfaces before new concrete placement has a major effect on the interface bond behaviour. However, there are challenges associated with the consistency of the final roughness interface prepared using conventional roughness preparation methods which influences the interface bond performance. In this study, five quantitative interface roughness textures with different roughness tooth angles, depths, and tooth distribution were created to ensure consistency of interface roughness and to evaluate the bond behaviour at a precast and new concrete interface using the splitting tensile test, slant shear test, and double-shear test. In addition, smooth interface specimens and two separate the pitting interface roughness were also utilized. Obtained results indicate that the quantitative roughness has a very limited effect on the interface tensile bond strength if no extra micro-roughness or bonding agent is added at the interface. The roughness method however causes enhanced shear bond strength at the interface. Increased tooth depth improved both the tensile and shear bond strength of the interfaces, while the tooth distribution mainly influenced the shear bond strength. Major failure modes of the test specimens include interface failure, splitting cracks, and sliding failure, and are influenced by the tooth depth and tooth distribution. Furthermore, the interface properties were obtained and presented while a comparison between the different testing methods, in terms of bond strength, was performed.

텔레뷰어 및 코어 스캔 이미지를 이용한 절리면 거칠기 계수의 정량적인 평가 (Quantitative Assessment of Joint Roughness Coefficient from Televiewer and Core scan Images)

  • 김중열;김유성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1205-1210
    • /
    • 2005
  • The behavior of rock mass and solute(e.g. groundwater, radioactivity) flow in fractured rock can be directly influenced by joint roughness. The characteristics of joint roughness is also a main factor for the rock classification(e.g. RMR, Q system) which is usually used in tunnel design. Nevertheless, most of JRC estimation has been carried out only by the examination with the naked eye. This JRC estimation has a lack of objectivity because each investigator judges JRC by his subjective opinion. Therefore, it will be desirable that the assessment of JRC is performed by a numerical analysis which can give a quantitative value corresponding to the characteristics of a roughness curve. Meanwhile, roughness curves for joint surfaces which are observed in drill cores have been obtained only along linear profiles. Although roughness curves are measured in the same joint surface, they can frequently show diverse aspects in a standpoint of roughness characteristics. If roughness curves can be measured along the elliptical circumferences of joint surfaces from core scanning images or Televiewer images, they will certainly be more comprehensive than those measured along linear profiles for roughness characteristics of joint surfaces. This study is focus on dealing with (1) extracting automatically roughness curves from core scan image or Televiewer image, (2) improving the accuracy of quantitative assessment of JRC using fractal dimension concept.

  • PDF

표면 거칠기 계수 Rs를 이용한 암석 절리면 전단강도 모델 (Modelling of Rock Joint Shear Strength Using Surface Roughness Parameter, Rs)

  • 이석원;배석일;이인모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.73-80
    • /
    • 2001
  • The shear strength of jointed rock is influenced by effective normal stress, joint wall compressive strength, joint roughness and so on. Since joint roughness makes considerable influences on shear strength of jointed rock, many studies tried to get quantitative joint roughness parameter. Until now, Joint Roughness Coefficient, JRC proposed by Barton has been prevalently used as a rock joint roughness parameter In spite of its disadvantages. In this study, a quantification of rock joint roughness is performed using surface roughness parameter, Rs. Proposed method is applied to rock core specimens, field joint surfaces, and JRC profiles. The scale of fluctuation is introduced to extend the suggested method to the large scale field joint surface roughness. Based on the quantification of joint surface roughness, joint shear tests are performed with the portable shear box. The relationship between joint surface roughness and joint shear strength is investigated and finally, a rock joint shear strength equation is derived from these results. The equation has considerable credibility and originality in that it is obtained from laboratory tests and expressed with quantified parameter.

  • PDF

분말 표면 조도의 3차원 레이저 분석기를 이용한 정량화와 압분성형체 강도에 미치는 영향 분석 (Quantitative Analysis of Roughness of Powder Surface Using Three-Dimensional Laser Profiler and its Effect on Green Strength of Powder Compacts)

  • 이동준;윤은유;김하늘;강희수;이언식;김형섭
    • 한국분말재료학회지
    • /
    • 제18권5호
    • /
    • pp.406-410
    • /
    • 2011
  • Green strength is an important property of powders since high green strength guarantees easy and safe handling before sintering. The green strength of a powder compact is related to mainly mechanical and surface characters, governed by interlocking of the particles. In this study, the effect of powder surface roughness on the green strength of iron powders was investigated using a transverse rupture test. Three-dimensional laser profiler was employed for quantitative analyses of the surface roughness. Two different surface conditions, i.e. surface roughness, of powders were compared. The powders having rough surfaces show higher green strength than the round surface powders since higher roughness leads increasing interlocked area between the contacting powders.

손등피부 운동 마찰계수 측정기를 이용한 체질 판별 가능성 연구 (A Feasibility Study of Constitution Discrimination Using a Measurement Device for Dynamic Friction Coefficients of the Back of a Hand)

  • 김근호;우영재;이혜정;이유정;김종열
    • 사상체질의학회지
    • /
    • 제22권4호
    • /
    • pp.20-29
    • /
    • 2010
  • 1. Objectives Our goal is to observe the feasibility of constitution discrimination from computing quantitative roughness index from dynamic friction coefficients and their gradients with the measurement device of skin friction with 3-Axis load cell sensor. 2. Methods In the traditional Korean medicine, skin diagnosis is one of the examination methods to discriminate Sasang constitution since it was known that Tae-eumin has rough skin, and Soyangin has smooth one. It is based on the skin roughness on the back of one's hand for the discrimination. The measurement device of skin friction with 3-axis load cell sensor has been developed in order to provide quantitative skin roughness through dynamic friction coefficients. The effective interval of the coefficients is obtained from the automatic sampling algorithm to use their curvature and slope. Then, Fisher's discriminant function of them makes the discrimination. 3. Results The success rate of extracting the effective interval was about 90% and the discriminant accuracy between Tae-eumin and Soyangin was 70% and 68% for men and women, respectively. The entire methods showed the possibility to distinguish between Tae-eumin and Soyangin by using stochastic properties of roughness index, which can make the entire system to include the measurement, the computation of the roughness index and the discrimination of constitution automatical. 4. Conclusions The measurement device, the automatic sampling algorithm of dynamic friction coefficients and the constitution discrimination algorithm were developed, respectively, and their combination can become the serial and automatic procedure for quantitative and objective skin diagnosis, which mimics the movement of the Oriental medical doctors' skin diagnosis. It can be applied to healthcare as well as the diagnosis of constitution in a u-Health system soon.

반두께 P.C. 슬래브의 면내전단내력에 관한 연구 (Interface Shear Strength in Half Precast Concrete Slab)

  • 이광수;김대근;최종수;신성우
    • 콘크리트학회지
    • /
    • 제6권4호
    • /
    • pp.161-168
    • /
    • 1994
  • 반두께 P.C. 슬래브는 슬래브의 일부분(하부)을 프리캐스트로 제작하고 상부에 현장 콘크리트를 타설하는 공법으로서 반두께 슬래브가 휨변형을 일으킬 때 접합면사이에서는 수평전단력이 발생하게 된다. 본 연구에서는 이러한 수평전단력에 저항하기 위한 방법으로 스크랫치 방법을 도입하였다. 주요 변수로서는 상부콘크리트의 압축강도, 전단철근의 유무, 콘크리트 표면거칠기, 그리고 용접철망과 전단철근의 결합유무등으로 되어있다. 모든 실험체의 접합면의 면적(A$_c$)은 3,2000$cm^2$으로 동일하다. 실험결과, 콘크리트 표면처리 깊이가 증가할수록 전단강도는 증가하였으며 전단철근이 없이 표면거칠기만에 의해 수평전단강도를 확보할 수 있었다. 콘크리트의 압축강도가 증가함에 따라 수평전단강도는 증가하였다. 또한 전단강도를 예측하기 위한 전단계수 결정식을 도출하였다.

지형변화의 양적측정에 의한 수치지형모델의 적용 (The Application of Digital Terrain Model with respect to the Quantitative Measurement of the Terrain Roughness)

  • 유복모;권현
    • 한국측량학회지
    • /
    • 제5권1호
    • /
    • pp.43-48
    • /
    • 1987
  • 지형의 변화를 양적으로 표시하는 매개변수-경사도, 곡율, 돌출빈도 및 표면적과 이에 대응하는 평면적의 비-로부터 지형을 분류하고, 이 지형에 따른 적합곡면식을 찾는다. 평탄지형, 완곡지형, 불규척지형을 지형변화양의 변수들에 의해 분류하였고, 평탄지형에는 선형평면식, 완곡지형은 3차 및 5차 곡면식, 그리고 불규칙지형은 5차 곡면식이 적합됨을 알 수 있었다.

  • PDF

여러 가지 방식의 쾌속조형물 특성 및 장비 성능의 정량적 비교 (Quantitative Comparisons of the Characteristics of various Rapid Prototypes and RP machines)

  • 김기대
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1237-1242
    • /
    • 2007
  • For the various RP processes and machines, quantitative comparisons were carried out, which include the variations of roughness according to inclined angle of surface, tensile strength and heat-resistance, shape accuracy affected by curl distortion, manufacturability of submilli-scale structure, and manufacturing speed. It was observed that steeper surface results in smoother roughness except Eden500V of Objet. Specimen made by LOM process showed the best heat-resistance, but that of SL process had heat-resistance only up to $60^{\circ}C$. Generally, tensile strength in the building direction was shown to be smaller than in the scanning direction, but SL process showed the opposite results. RM6000II of CMET was superior in the manufacturing small-scale structure below 0.2mm, and Z510 of Zcorp. and ViperPRO of 3D systems were great in manufacturing speed.

  • PDF

자유곡면의 정밀가공을 위한 표면거칠기의 정량적 해석에 관한 연구 (A Study Quantitative Analysis of Surface Roughness for Precision Machining of Sculptured Surface)

  • 김병희;주종남
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1483-1495
    • /
    • 1994
  • A quantitative analysis of a surface roughness for a precision machining of a sculptured surface in milling process is treated under superposition theory in this paper. The geometrical surface rouhgness is calculated as a function of feed per tooth, path interval, radii of tool and cutting edge, and radii of curvatures of workiece. Through machining experiments in a 3-axis machining center, we confirmed the adequacy of the adequacy of the analysis. While cutter mark is neglegible in ball endmilling, it is significant in flat endmilling. When feed per tooth is very small, flat endmilling gives superior finish to ball endmilling. In flat endmilling, cutting condition and cutter path should be strategically chosen to balance the cutter mark height and cusp height.

Quantitative parameters of primary roughness for describing the morphology of surface discontinuities at various scales

  • Belem, Tikou
    • Geomechanics and Engineering
    • /
    • 제11권4호
    • /
    • pp.515-530
    • /
    • 2016
  • In this paper, five different quantitative parameters were proposed for the characterization of the primary roughness which is the component of surface morphology that prevails during large strike-slip faults of more than 50 m. These parameters are mostly the anisotropic properties of rock surface morphology at various scales: (i) coefficient ($k_a$) and degree (${\delta}_a$) of apparent structural anisotropy of surface; (ii) coefficient ($k_r$) and degree (${\delta}_r$) of real structural anisotropy of surface; (iii) surface anisotropy function P(${\varphi}$); and (iv) degree of surface waviness ($W_s$). The coefficient and degree of apparent structural anisotropy allow qualifying the anisotropy/isotropy of a discontinuity according to a classification into four classes: anisotropic, moderately anisotropic/isotropic and isotropic. The coefficient and degree of real structural anisotropy of surface captures directly the actual surface anisotropy using geostatistical method. The anisotropy function predicts directional geometric properties of a surface of discontinuity from measurements in two orthogonal directions. These predicted data may subsequently be used to highlight the anisotropy/isotropy of the surface (radar plot). The degree of surface waviness allows qualifying the undulation of anisotropic surfaces. The proposed quantitative parameters allows their application at both lab and field scales.