DOI QR코드

DOI QR Code

Quantitative Analysis of Roughness of Powder Surface Using Three-Dimensional Laser Profiler and its Effect on Green Strength of Powder Compacts

분말 표면 조도의 3차원 레이저 분석기를 이용한 정량화와 압분성형체 강도에 미치는 영향 분석

  • Lee, Dong-Jun (Department of Materials Science and Engineering, POSTECH(Pohang University of Science and Technology)) ;
  • Yoon, Eun-Yoo (Department of Materials Science and Engineering, POSTECH(Pohang University of Science and Technology)) ;
  • Kim, Ha-Neul (New Materials Research Department, RIST) ;
  • Kang, Hee-Soo (New Materials Research Department, RIST) ;
  • Lee, Eon-Sik (New Materials Research Department, RIST) ;
  • Kim, Hyoung-Seop (Department of Materials Science and Engineering, POSTECH(Pohang University of Science and Technology))
  • 이동준 (포항공과대학교 신소재공학과) ;
  • 윤은유 (포항공과대학교 신소재공학과) ;
  • 김하늘 (포항산업과학원구원 신금속연구본부) ;
  • 강희수 (포항산업과학원구원 신금속연구본부) ;
  • 이언식 (포항산업과학원구원 신금속연구본부) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Received : 2011.07.03
  • Accepted : 2011.07.31
  • Published : 2011.10.28

Abstract

Green strength is an important property of powders since high green strength guarantees easy and safe handling before sintering. The green strength of a powder compact is related to mainly mechanical and surface characters, governed by interlocking of the particles. In this study, the effect of powder surface roughness on the green strength of iron powders was investigated using a transverse rupture test. Three-dimensional laser profiler was employed for quantitative analyses of the surface roughness. Two different surface conditions, i.e. surface roughness, of powders were compared. The powders having rough surfaces show higher green strength than the round surface powders since higher roughness leads increasing interlocked area between the contacting powders.

Keywords

References

  1. R. M. German: Powder Metallurgy of iron and Steel, John Wiley & Sons, Inc., New York (1998) 20.
  2. A. Salak: Ferrous powder metallurgy, CISP, Cambrige, UK (1996) 354.
  3. D. J. Lee, E. Y. Yoon, H. N. Kim, H. S. Kang, E. S. Lee and H. S. Kim: J. Korean Powder Metall. Inst., 18 (2011) 221 (Korean). https://doi.org/10.4150/KPMI.2011.18.3.221
  4. D. Poquillon, J. Lemaitre, V. Baco-Carles, Ph. Tailhades and J. Lacaze: Powder Tech., 126 (2002) 65. https://doi.org/10.1016/S0032-5910(02)00034-7
  5. D. Poquillon, J. Lemaitre, V. Baco-Carles, Ph. Tailhades and J. Lacaze: Powder Tech., 126 (2002) 75. https://doi.org/10.1016/S0032-5910(02)00035-9
  6. I. Nikolakakis and N. Pilpel: Powder Tech., 56 (1988) 95. https://doi.org/10.1016/0032-5910(88)80003-2
  7. J. S. Hirschhorn, G. M. Maxwell and A. V. Nadkarni: Powder Tech., 5 (1971) 72.
  8. E. Y. Vyal' and A. M. Laptev: Powder Metall. Met. Ceram., 44 (2005) 615.
  9. L. P. Lefebvre, Y. M. Henuset, Y. Deslandes and G. Pleizier: Powder Metall., 42 (1999) 325. https://doi.org/10.1179/003258999665675
  10. A. F. Zhornyak and V. E. Oliker: Powder Metall. Met. Ceram., 17 (1977) 558.
  11. R. M. German: Powder Metallurgy of iron and Steel, John Wiley & Sons, Inc., New York (1998) 50.

Cited by

  1. Obtaining Mechanical Properties of Fe Powder Using a Combined Nanoindentation and the Finite Element Method vol.20, pp.4, 2013, https://doi.org/10.4150/KPMI.2013.20.4.280
  2. A Study on the Carbon Composite Briquette Iron Manufacturing Using Fe-containing Process Wastes vol.24, pp.3, 2015, https://doi.org/10.7844/kirr.2015.24.3.34