DOI QR코드

DOI QR Code

Quantitative parameters of primary roughness for describing the morphology of surface discontinuities at various scales

  • Belem, Tikou (Universite du Quebec en Abitibi-Temiscamingue (UQAT), Research Institute in Mining and Environment (RIME))
  • Received : 2015.11.13
  • Accepted : 2016.06.02
  • Published : 2016.10.25

Abstract

In this paper, five different quantitative parameters were proposed for the characterization of the primary roughness which is the component of surface morphology that prevails during large strike-slip faults of more than 50 m. These parameters are mostly the anisotropic properties of rock surface morphology at various scales: (i) coefficient ($k_a$) and degree (${\delta}_a$) of apparent structural anisotropy of surface; (ii) coefficient ($k_r$) and degree (${\delta}_r$) of real structural anisotropy of surface; (iii) surface anisotropy function P(${\varphi}$); and (iv) degree of surface waviness ($W_s$). The coefficient and degree of apparent structural anisotropy allow qualifying the anisotropy/isotropy of a discontinuity according to a classification into four classes: anisotropic, moderately anisotropic/isotropic and isotropic. The coefficient and degree of real structural anisotropy of surface captures directly the actual surface anisotropy using geostatistical method. The anisotropy function predicts directional geometric properties of a surface of discontinuity from measurements in two orthogonal directions. These predicted data may subsequently be used to highlight the anisotropy/isotropy of the surface (radar plot). The degree of surface waviness allows qualifying the undulation of anisotropic surfaces. The proposed quantitative parameters allows their application at both lab and field scales.

Keywords

References

  1. Aydan, O., Shimizu, Y. and Kawamoto, T. (1996), "The anisotropy of surface morphology characteristics of rock discontinuities", Rock Mech. Rock Eng., 29(1), 47-59. https://doi.org/10.1007/BF01019939
  2. Barbosa, R.E. (2009), "Constitutive model for small rock joint samples in the lab and large rock joint surfaces in the field", Proceedings of the 3rd CANUS Rock Mechanics Symposium, ROCKENG09, Toronto, Canada, May.
  3. Belem, T. and Homand, F. (2002), "Characterization of the anisotropy of rock joints surface morphology", Proceedings of the 2nd International Conference on New Development in Rock Mechanics, Shenyeng, China, October.
  4. Belem, T., Homand-Etienne, F. and Souley, M. (2000), "Quantitative parameters for rock joint surface roughness", Rock Mech. Rock Eng., 33(4), 217-242. https://doi.org/10.1007/s006030070001
  5. Belem, T., Souley, M. and Homand, F. (2007), "Modelling rock joint walls surface degradation during monotonic and cyclic shearing", Acta Geotechnica, 2(4), 227-248. https://doi.org/10.1007/s11440-007-0039-7
  6. Bitenc, M., Kieffer, D.S., Khoshelham, K. and Vezocnik, R. (2014), "Quantification of rock joint roughness using terrestrial laser scanning", Proceedings of the 12th Congress of the International Association of Engineering Geology, Engineering Geology for Society and Territory, Torino, Italy, September.
  7. Bitenc, M., Kieffer, D.S., Khoshelham, K. and Vezocnik, R. (2015), "Book Chapter: Quantification of rock joint roughness using terrestrial laser scanning", In: Engineering Geology for Society and Territory, Springer International Publishing, Switzerland, 6, pp. 835-838.
  8. Chen, S.J., Zhu, W.C., Yu, Q.L. and Liu, X.G. (2016), "Characterization of anisotropy of joint surface roughness and aperture by variogram approach based on digital image processing technique", Rock Mech . Rock Eng., 49(3), 855-876. https://doi.org/10.1007/s00603-015-0795-x
  9. Fardin, N. (2008), "Influence of structural non-stationarity of surface roughness on morphological characterization and mechanical deformation of rock joints", Rock Mech. Rock Eng., 41(2), 267-297. https://doi.org/10.1007/s00603-007-0144-9
  10. Fardin, N., Stephansson, O. and Jing, L. (2001), "The scale dependence of rock joint surface roughness", Int. J. Rock Mech. Mining Sci., 38(5), 659-669. https://doi.org/10.1016/S1365-1609(01)00028-4
  11. Fathi, A., Moradian, Z., Rivard, P., Ballivy, G. and Boyd, A. (2016), "Geometric effect of asperities on shear mechanism of rock joints", Rock Mech. Rock Eng., 49(3), 801-820. https://doi.org/10.1007/s00603-015-0799-6
  12. Feng, Q., Fardin, N., Jing, L. and Stephansson, O. (2003), "A new method for in situ non-contact roughness measurement of large rock fracture surfaces", Rock Mech. Rock Eng., 36(1), 3-25. https://doi.org/10.1007/s00603-002-0033-1
  13. Ge, Y., Tang, H., Eldin, M.A.M.E., Chen, P., Wang, L. and Wang, J. (2015), "A description for rock joint roughness based on terrestrial laser scanner and image analysis", Sci. Rep., 5, 16999, pp. 1-10. DOI: 10.1038/srep16999
  14. Grasselli, G. (2006), "Shear strength of rock joints based on quantified surface description - Manuel Rocha medal recipient", Rock Mech. Rock Eng., 39(4), 295-314. https://doi.org/10.1007/s00603-006-0100-0
  15. Grasselli, G., Wirth, J. and Egger, P. (2002), "Quantitative three-dimensional description of a rough surface and parameter evolution with shearing", Int. J. Rock Mech. Mining Sci., 39(6),789-800. https://doi.org/10.1016/S1365-1609(02)00070-9
  16. Hong, E.-S., Lee, I.-M., Cho, G.-C. and Lee, S.-W. (2014), "New approach to quantifying rock joint roughness based on roughness mobilization characteristics", KSCE J. Civ. Eng., 18(4), 984-991. https://doi.org/10.1007/s12205-014-0333-5
  17. Jing, L. (2003), "A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering", Int. J. Rock Mech. Mining Sci., 40(3), 283-353. https://doi.org/10.1016/S1365-1609(03)00013-3
  18. Kana, D.D., Fox, D.J. and Hisiung, S.M. (1996), "Interlock/friction model for dynamic shear response in natural jointed rock", Int. J. Rock Mech. Mining Sci. Geomech. Abstrs., 33(4), 371-386. https://doi.org/10.1016/0148-9062(95)00073-9
  19. Karami, A. and Stead, D. (2008), "Asperity degradation and damage in direct shear test: A hybrid FEM/DEM approach", Rock Mech. Rock Eng., 41(2), 229-266. https://doi.org/10.1007/s00603-007-0139-6
  20. Lanaro, F. (2000), "A random field model for surface roughness and aperture of rock fractures", Int. J. Rock Mech. Mining Sci., 37(8), 1195-210. https://doi.org/10.1016/S1365-1609(00)00052-6
  21. Lato, M., Hutchinson, D.J., Diederichs, M.S. and Kalenchuk, K. (2007), "Evaluating block shape and block volume distributions of rock faces using LiDAR and 3DEC", Geophys. Res. Absts. (European Geosciences Union), 9, 1-2.
  22. Lato, M., Hutchinson., D.J., Diederichs, M.S. and Harrap, R. (2009), "Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rock masses", Int. J. Rock Mech. Mining Sci., 46(1), 194-199. https://doi.org/10.1016/j.ijrmms.2008.04.007
  23. Marache, A., Riss, J., Gentier, S. and Chiles, J.P. (2002), "Characterization and reconstruction of a rock fracture surface by geostatistics", Int. J. Num. Anal. Meth. Geomech., 26(9), 873-896. https://doi.org/10.1002/nag.228
  24. Nemoto, K., Watanabe, N., Hirano, N. and Tsuchiya, N. (2009), "Direct measurement of contact area and stress dependence of anisotropic flow through rock fracture with heterogeneous aperture distribution", Earth Planet. Sci. Lett., 281(1-2), 81-87. https://doi.org/10.1016/j.epsl.2009.02.005
  25. Park, J.W. and Song, J.J. (2013), "Numerical method for the determination of contact areas of a rock joint under normal and shear loads", Int. J. Rock Mech. Mining Sci., 58, 8-22. https://doi.org/10.1016/j.ijrmms.2012.10.001
  26. Pickering, C. and Aydin, A. (2015), "Modeling roughness of rock discontinuity surfaces: a signal analysis approach", Rock Mech. Rock Eng., 1-7. DOI: 10.1007/s00603-015-0870-3
  27. Rasouli, V. and Harrison, J.P. (2000), "Scale effect, anisotropy and directionality of discontinuity surface roughness", Proceedings of the EUROCK 2000, 14th Symposium on Rock Mechanics and Tunnel Construction, Aachen, Germany, March.
  28. Renard, F., Voisin, C., Marsan, D. and Schmittbuhl, J. (2006), "High resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales", Geophys. Res. Lett., 33(4), (L04305). DOI: 10.1029/2005GL025038
  29. Sagy, A., Brodsky, E.E. and Axen, G.J. (2007), "Evolution of fault-surface roughness with slip," Geology, 35(3), 283-286. https://doi.org/10.1130/G23235A.1
  30. Sharifzadeh, M., Mitani, Y. and Esaki, T. (2006), "Rock joint surfaces measurement and analysis of Aperture distribution under different normal and shear loading using GIS", Rock Mech. Rock Eng., 41(2), 299-323. https://doi.org/10.1007/s00603-006-0115-6
  31. Tatone, B.S.A. and Grasselli, G. (2010), "A new 2D discontinuity roughness parameter and its correlation with JRC", Int. J. Rock Mech. Mining Sci., 47(8), 1391-1400. https://doi.org/10.1016/j.ijrmms.2010.06.006
  32. Wong, T.F. (1985), "Geometric probability approach to the characterization and analysis of microcracking in rocks", Mech. Mat., 4(3-4), 261-276. https://doi.org/10.1016/0167-6636(85)90023-7
  33. Zhang, G., Karakus, M., Tang, H., Ge, Y. and Zhang, L. (2014), "A new method estimating the 2D Joint Roughness Coefficient for discontinuity surfaces in rock masses", Int. J. Rock Mech. Mining Sci., 72, 191-198. https://doi.org/10.1016/j.ijrmms.2014.09.009

Cited by

  1. Characterization of rock joint surface anisotropy considering the contribution ratios of undulations in different directions vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-74229-z
  2. Theoretical model for the shear strength of rock discontinuities with non-associated flow laws vol.24, pp.4, 2016, https://doi.org/10.12989/gae.2021.24.4.307