• Title/Summary/Keyword: quadratic regulator

Search Result 153, Processing Time 0.031 seconds

Linear Quadratic Controller Design of Insect-Mimicking Flapping Micro Aerial Vehicle (곤충모방 날갯짓 비행체의 LQ 제어기 설계)

  • Kim, Sungkeun;Kim, Inrae;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.450-458
    • /
    • 2017
  • This paper presents dynamic modelling and simulation study on attitude/altitude control of an insect-mimicking flapping micro aerial vehicle during hovering. Mathematical modelling consists of three parts: simplified flapping kinematics, flapping-wing aerodynamics, and six degree of freedom dynamics. Attitude stabilization is accomplished through linear quadratic regulator based on the linearized model of the time-varying nonlinear system, and altitude control is designed in the outer loop using PID control. The performance of the proposed controller is verified through numerical simulation where attitude stabilization and altitude control is done for hovering. In addition, it is confirmed that the attitude channel by periodic control is marginally stable against periodic pitching moment caused by flapping.

Longitudinal Control Using Linear Quadratic Tracker with Integrator and Handling Qualities for Unmanned Rotorcraft (LQTI를 이용한 회전익 무인항공기 종방향 조종성 평가를 위한 제어법칙 설계 및 조종성 평가)

  • Lee, Changmin;Kim, Sungkeun;Jo, Seunghwan;Ra, Chunggil;Kim, Ki-joon;Suk, Jinyoung;Kim, Seungkeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.393-400
    • /
    • 2017
  • A virtual simulation test program to carry out the handling qualities of unmanned Rotorcraft has developed by using the MATLAB GUIDE(Graphic User Interface Development Environment). The handling quality evaluation program based on ADS-33E contributes to design the flight control system and to evaluate handling qualities. In addition, Linear Quadratic Tracker with Integrator(LQTI) attitude controller based on Linear Quadratic Regulator(LQR) for to rotorcraft BO-105C and the effects of the handling qualities is analyzed change to weight matrices of the Q and R.

A method for deciding weighting matrices in a linear discrete time optimal regulator problems to locate all poles in the specified region

  • Shin, Jae-Woong;Shimemura, Etsujiro;Kawasaki, Naoya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.729-733
    • /
    • 1988
  • In this paper, a new procedure for selecting weighting matrices in linear discrete time quadratic optimal control problems (LQ-problem) is proposed. In LQ problems, the quadratic weighting matrices are usually decided on trial and error in order to get a good response. But using the proposed method, the quadratic weights are decided in such a way that all poles of the closed loop system are located in a desired area for good responses as well as for stability and values of the quadratic cost functional are kept less then a specified value. The closed loop systems constructed by this method have merits of LQ problems as well as those of pole assignment problems. Taking into consideration that little is known about the relationship among the quadratic weights, the poles and the values of cost functional, this procedure is also interesting from the theoretical point of view.

  • PDF

A semi-active acceleration-based control for seismically excited civil structures including control input impulses

  • Chase, J. Geoffrey;Barroso, Luciana R.;Hunt, Stephen
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.287-301
    • /
    • 2004
  • Structural acceleration regulation is a means of managing structural response energy and enhancing the performance of civil structures undergoing large seismic events. A quadratic output regulator that minimizes a measure including the total structural acceleration energy is developed and tested on a realistic non-linear, semi-active structural control case study. Suites of large scaled earthquakes are used to statistically quantify the impact of this type of control in terms of changes in the statistical distribution of controlled structural response. This approach includes the impulses due to control inputs and is shown to be more effective than a typical displacement focused control approach, by providing equivalent or better performance in terms of displacement and hysteretic energy reductions, while also significantly reducing peak story accelerations and the associated damage and occupant injury. For earthquake engineers faced with the dilemma of balancing displacement and acceleration demands this control approach can significantly reduce that concern, reducing structural damage and improving occupant safety.

A Sensorless Speed Control of Brushless DC Motor in Hard Disk Drive using the Linear Quadratic Regulator (LQR 제어기를 이용한 HDD용 BLDC 모터의 속도 센서리스 제어)

  • Yang, Lee-Woo;Kim, Young-Seok;Kim, Sang-Uk;Kim, Hyun-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.183-186
    • /
    • 2007
  • This Paper presents a solution to control the Brushless DC Motor(BLDCM) in Hard Disk Drive(HDD) using the Linear Quadratic Regulator(LQR). Generally, The speed of BLDCM in HDD is controlled by the lead angle control or the input voltage control using PAM(Pulse Amplitude Modulation) etc. These control methods have speed overshoot in speed control and need the long time until BLDCM reaches at the steady state. In order to improve the performance, this paper present the PI speed controller using the LQR based on vector control and the rotor position detection methods at the space vector PWM inverter. The proposed methods are proved by the simulation and experimental results.

  • PDF

ATTITUDE AND CONFIGURATION CONTROL OF FLEXIBLE MULTI-BODY SPACECRAFT

  • Choi, Sung-Ki;Jone, E.;Cochran, Jr.
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.107-122
    • /
    • 2002
  • Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems ad-dressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.

A Sensorless Speed Control of Brushless DC Motor in Digital Lightening Processor using the Linear Quadratic Regulator (DLP용 BLDC 모터의 속도 센서리스 제어)

  • Yang, Iee-Woo;Kim, Young-Seok;Kim, Sang-Uk;Kim, Hyun-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1102-1103
    • /
    • 2007
  • This Paper presents a solution to control the Brushless DC Motor(BLDCM) in Digital Lightening Processor(DLP) using the Linear Quadratic Regulator(LQR). Generally, The speed of BLDCM in DLP is controlled by the lead angle control or the input voltage control using PAM(Pulse Amplitude Modulation) etc. These control methods have speed overshoot in speed control and need the long time until BLDCM reaches at the steady state. In order to improve the performance, this paper present the PI speed controller using the LQR based on vector control and the rotor position detection methods at the space vector PWM inverter. The proposed methods are proved by the experimental results

  • PDF

Skyhook Control of a Semi-Active ER Damper (반능동 ER댐퍼의 스카이훅 제어)

  • Lee, Yuk-Hyeong;Park, Myeong-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.56-62
    • /
    • 2001
  • In this paper, skyhook control of a semi-active ER(Electro-Rheological) damper is investigated. The strength of the ER damper is controlled by a high voltage power supply. This paper deals with a two-degree-of-freedom suspension using the damper with ERF for a quarter vehicle system. The control law for semi-active suspensions modeled in this study is developed using skyhook and Linear Quadratic Regulator(LQR) optimal control method. Computer simulation and experimental results show that the semi-active suspension with ERF damper has good performances of ride quality.

  • PDF

Time varying LQR-based optimal control of geometrically exact Reissner's beam model

  • Suljo Ljukovac;Adnan Ibrahimbegovic;Maida Cohodar-Husic
    • Coupled systems mechanics
    • /
    • v.13 no.1
    • /
    • pp.73-93
    • /
    • 2024
  • In this work, we propose combining an advanced optimal control algorithm with a geometrically exact beam model. For simplicity, the 2D Reissner beam model is chosen to represent large displacements and rotations. The difficulty pertains to the nonlinear nature of beam kinematics affecting the tangent stiffness matrix, making it non-constant, which compromises direct use of optimal control methods for linear problems. Thus, we seek to accommodate a time varying control using linear-quadratic regulator (LQR) algorithm with the proposed geometrically nonlinear beam model. We provide a detailed theoretical formulation and its numerical implementation in a variational format form. Several illustrative numerical examples are provided to confirm an excellent performance of the proposed methodology.

Control of Flexible Joint Cart based Inverted Pendulum using LQR and Fuzzy Logic System (LQR-퍼지논리제어기에 의한 2중 차량 구조 역진자 시스템의 제어)

  • Xu, Yue;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.268-274
    • /
    • 2013
  • Any new method for controlling a nonlinear system has widely been reported. An inverted pendulum system has typically been used as a target system for demonstrating its usefulness. In this paper, we propose an algorithm to control a flexible joint cart based inverted pendulum system. Two carts are connected with a spring and one is a driving cart and the other is no driving cart with a pole. We here present a system modeling and a good fuzzy logic based control algorithm. We also introduce LQR (Linar Quadratic Regulator) technique for reducing the number of control variables. By using this technique, the number of input variables for a fuzzy logic controller is become only two not six. So the computational complexity is largely reduced. Moreover, a two-input fuzzy logic controller has a control rule table with a skew-symmetric property. And it will lead the design of a single-input fuzzy logic controller. In order to demonstrate the usefulness of the proposed method and prove the superiority of the proposed method, some computer simulations are presented.