DOI QR코드

DOI QR Code

Linear Quadratic Controller Design of Insect-Mimicking Flapping Micro Aerial Vehicle

곤충모방 날갯짓 비행체의 LQ 제어기 설계

  • Kim, Sungkeun (Department of Electro-Optronics.PGM R&D Center, Hanwha Systems) ;
  • Kim, Inrae (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Seungkeun (Department of Aerospace Engineering, Chungnam National University) ;
  • Suk, Jinyoung (Department of Aerospace Engineering, Chungnam National University)
  • 김성근 (한화시스템 전자광학.PGM연구소) ;
  • 김인래 (충남대학교 항공우주공학과) ;
  • 김승균 (충남대학교 항공우주공학과) ;
  • 석진영 (충남대학교 항공우주공학과)
  • Received : 2017.09.11
  • Accepted : 2017.09.22
  • Published : 2017.10.31

Abstract

This paper presents dynamic modelling and simulation study on attitude/altitude control of an insect-mimicking flapping micro aerial vehicle during hovering. Mathematical modelling consists of three parts: simplified flapping kinematics, flapping-wing aerodynamics, and six degree of freedom dynamics. Attitude stabilization is accomplished through linear quadratic regulator based on the linearized model of the time-varying nonlinear system, and altitude control is designed in the outer loop using PID control. The performance of the proposed controller is verified through numerical simulation where attitude stabilization and altitude control is done for hovering. In addition, it is confirmed that the attitude channel by periodic control is marginally stable against periodic pitching moment caused by flapping.

본 연구에서는 곤충모방 날갯짓 비행체의 모델링과 제자리비행을 위한 자세제어 및 고도제어기를 설계하여 동역학 모델을 이용한 시뮬레이션을 수행하고 그 결과를 분석하였다. 곤충모방 날갯짓 비행체의 간략화한 날갯짓 운동, 날갯짓의 병진운동 및 회전운동에 대한 공력, 동체 동역학에 대해 수치모델링을 수행하였다. 제자리비행 자세제어를 위해 날갯짓 비행체가 가지는 시변 비선형 시스템을 선형화하여 설계한 LQR(Linear Quadratic Regulator) 제어기법을 통하여 자세안정화를 적용하였으며 PID 제어기법을 통해 고도제어를 수행하였다. 수치 시뮬레이션을 통해 설계된 모델과 제어기의 성능을 확인하였으며 제자리비행을 위한 자세안정화 및 고도 제어가 안정적으로 수행되는 것을 확인하였다. 또한 날갯짓에 의해 발생하는 주기적인 피칭 모멘트를 주기적인 제어입력을 통해 임계 안정하도록 자세 안정화를 수행하는 것을 확인 하였다.

Keywords

References

  1. J.M. Lee, J.W. Chang, and Y.S. Jung, "Development of a Micro Ornithopter with a Weight of 20 gram," Journal of the Korean Society for Aeronautical & Space Sciences Vol. 33 no .10 2005, pp. 82-92. https://doi.org/10.5139/JKSAS.2005.33.10.082
  2. Y.M. Kevin, P. Chirarattananon, S.B. Fuller, and R.J. Wood, "Controlled flight of a biologically inspired, insect-scale robot," Science, Vol. 340 Issue. 6132 2013, pp.603-607. https://doi.org/10.1126/science.1231806
  3. X. Deng, L. Schenato, W.C. Wu, and S.S. Sastry, "Flapping flight for biomimetic robotic insects: Part I-system modeling," IEEE Transactions on Robotics, Vol. 22 no. 4, 2006, pp.776-788. https://doi.org/10.1109/TRO.2006.875480
  4. J.P. Whitney and R.J. Wood, "Aeromechanics of passive rotation in flapping flight," Journal of Fluid Mechanics, Vol. 660, pp. 197-220.
  5. C.T. Orlowski, "Modeling and Simulation of Nonlinear Dynamics of Flapping Wing Micro Air Vehicles," AIAA Journal, Vol. 49, no.8, May. 2011 pp.969-981. https://doi.org/10.2514/1.J050649
  6. B. Cheng and X. Deng, "A Neural Adaptive Controller in Flapping Flight," Journal of Robotics and Mechatronics, Vol. 24, No.4, 2012, pp. 602-611 https://doi.org/10.20965/jrm.2012.p0602
  7. H.E. Taha, M.R. Hajj, and A.H. Nayfeh, "Flight dynamics and control of flapping-wing MAVs: a review.", Nonlinear Dynamics, Vol. 70, Issue. 2, Oct 2012, pp. 907-939. https://doi.org/10.1007/s11071-012-0529-5
  8. M.H. Dickinson, F.-O. Lehmann, S.P. Sane, "Wing Rotation and the Aerodynamic Basis of Insect Flight", Science, Vol. 284, 1999, pp. 1954-1960. https://doi.org/10.1126/science.284.5422.1954
  9. B. Cheng, S.N. Fry, Q. Huang, W.B. Dickson, and X. Deng, "Turning dynamics and passive damping in flapping flight", IEEE International Conference on Robotics and Automation, May 2009, pp. 1889-1896.
  10. M. Sun, J. Wang, and Y. Xiong, "Dynamic flight stability of hovering insects", Acta Mechanica Sinica, Vol. 23, no.3, 2007 pp.231-246. https://doi.org/10.1007/s10409-007-0068-3
  11. F.-O. Lehmann and S. Pick, "The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings," Journal of experimental biology, Vol. 210, no.8, 2007 pp.1362-1377. https://doi.org/10.1242/jeb.02746
  12. M.H. Dickinson, F.-O. Lehmann, and S.P. Sane, "Wing Rotation and the Aerodynamic Basis of Insect Flight," Science, Vol. 284, Issue5422, 1999, pp 1954-1960. https://doi.org/10.1126/science.284.5422.1954
  13. S.P. Sane and M.H. Dickinson, "The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight," The Journal of Experimental Biology, Vol. 205, 2002, pp 1087-1096.
  14. A. Roshanbin, C. Collette, and A. Preumont, "Mathematical Modelling of Insect-Like Flapping Wing for application to MAVs," in International Symposium on Light Weight Unmanned Aerial Vehicle Systems and Subsystems, 2009
  15. B. Cheng, S. N. Fry, Q. Huang, and X. Deng, "Aerodynamic damping during rapid flight maneuvers in the fruit fly Drosophila," The Journal of Experimental Biology, Vol. 213, 2012, pp 602-612.
  16. B.M. Fionio and R.J. Wood, "Open-loop roll, pitch and yaw torques for a robotic bee," 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.
  17. M. Keennon, K. Klingebiel, H. Won, and A. Andriukov, "Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle," 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012.
  18. T.L. Hedrick, B. Cheng, and X. Deng, "Wingbeat time and the scaling of passive rotational damping in flapping flight," Science, Vol. 324, Issue. 5924, pp. 252-255. https://doi.org/10.1126/science.1168431
  19. B. Cheng and X. Deng, "Translational and Rotational Damping of Flapping Flight and Its Dynamics and Stability at Hovering," IEEE Transactions on Robotics, Vol. 27, No. 5, 2011, pp 849-864. https://doi.org/10.1109/TRO.2011.2156170
  20. B. Cheng, and X. Deng. "Near-hover dynamics and attitude stabilization of an insect model," in American Control Conference (ACC), USA, pp 39-44, 29 July 2010
  21. M. Karasek, and A. Preumont. "Simulation of flight control of a hummingbird like robot near hover," Engineering Mechanics, pp 607-619, 2012.