• Title/Summary/Keyword: Insect-mimicking

Search Result 7, Processing Time 0.022 seconds

Demonstration of Stable Vertical Takeoff of an Insect-Mimicking Flapping-Wing System (곤충 모방 날갯짓 비행체의 안정적인 수직 이륙 비행 구현)

  • Phan, Hoang-Vu;Truong, Quang-Tri;Nguyen, Quoc-Viet;Park, Hoon-Cheol;Byun, Do-Young;Goo, Nam-Seo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.76-80
    • /
    • 2012
  • This paper demonstrates how to implement inherent pitching stability in an insect-mimicking flapping-wing system for vertical takeoff. Design and fabrication of the insect-mimicking flapping-wing system is briefly described focusing on the recent modification. Force produced by the flapping-wing systems is estimated using the UBET (Unsteady Blade Element Theory) developed in the previous work. The estimation shows that the wing twist placed in the modified system can improve thrust production for about 10 %. The estimated thrust is compared with the measured thrust, which proves that the UBET provides fairly good estimations for the thrust produced by the flapping-wing systems. The vertical takeoff test shows that inherent pitching stability can be implemented in an insect-mimicking flapping-wing system by aligning the aerodynamic force center and center of gravity.

Evaluation of an insect-mimicking flapping device actuated by a piezoceramic actuator (곤충 비행원리를 모사한 압전 작동기 구동형 날갯짓 기구의)

  • 박훈철;변도영;구남서;모하메드 샤이푸딘
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.55-62
    • /
    • 2006
  • This paper presents experimental evaluation of an insect-mimicking flapping-wing device actuated by a unimorph piezoceramic actuator. Length of each rod and hinge point in the linkage/amplification system are carefully chosen such that the resulting wing motion can mimic clapping of wings in a real insect at the end of upstroke. In addition to this, a pair of corrugated wings are fabricated mimicking zig-zag cross section of a real insect wing. Thanks to the two additional implementation, the improved flapping wing device can generate a larger lift force than the previous model even though area of the new wing is about 50% less than that of the previous wing. In this work, effects of the wing clapping, the wing corrugation, and the input wave form on the lift force generation have been also experimentally investigated. Finally, the vortex generated by the flapping device has been captured by a high speed camera, showing that vortices are produced during up- and down-strokes.

Insect-mimicking Flapping Device Actuated by a Piezoceramic Actuator LIPCA (압전작동기 LIPCA로 구동하는 곤충 모방 날갯짓 기구)

  • Park, Hoon-Cheol;Moh, Syaifuddin;Yoon, Kwang-Joon;Goo, Nam-Seo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.719-722
    • /
    • 2005
  • In this paper, we present out recent progress in the LIPCA (Lightweight Piezo-Composite Actuator) application for actuation of a flapping wing device. The flapping device uses linkage system that can amplify the actuation displacement of LIPCA. The feathering mechanism is also designed and implemented such that the wing can rotate during flapping. The natural flapping-frequency of the device was about 9 Hz, where the maximum flapping angle was achieved. The flapping test under 5 Hz to 15 Hz flapping frequency was performed to investigate the flapping performance by measuring the produced lift and thrust. Maximum lift and thrust were produced when the flapping device was actuated at about the natural flapping-frequency.

  • PDF

Linear Quadratic Controller Design of Insect-Mimicking Flapping Micro Aerial Vehicle (곤충모방 날갯짓 비행체의 LQ 제어기 설계)

  • Kim, Sungkeun;Kim, Inrae;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.450-458
    • /
    • 2017
  • This paper presents dynamic modelling and simulation study on attitude/altitude control of an insect-mimicking flapping micro aerial vehicle during hovering. Mathematical modelling consists of three parts: simplified flapping kinematics, flapping-wing aerodynamics, and six degree of freedom dynamics. Attitude stabilization is accomplished through linear quadratic regulator based on the linearized model of the time-varying nonlinear system, and altitude control is designed in the outer loop using PID control. The performance of the proposed controller is verified through numerical simulation where attitude stabilization and altitude control is done for hovering. In addition, it is confirmed that the attitude channel by periodic control is marginally stable against periodic pitching moment caused by flapping.

Production and properties of cross-linked recombinant pro-resilin: an insect rubber-like biomaterial

  • Kim, Mi-Sook;Elvin, Chris;Lyons, Russell;Huson, Mickey
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.256-256
    • /
    • 2006
  • The design and synthesis of novel biomolecular materials, based on mimicking the properties of molecules found in nature, is providing materials with unusual properties. Resilin serves as an energy storage material in insects and facilitates flight, jumping (in fleas, froghoppers etc) and sound production (cicadas, etc). Resilin is initially produced as a soluble protein and in its mature form is crosslinked through formation of dityrosine units into a very large insoluble polymer. In the present study, we have synthesized a recombinant form of resilin that can be photochemically cross-linked into a resilient, rubber-like biomaterial that may be suitable for spinal disc implants. This material is almost perfectly elastic and its fatigue lifetime in insects must be >500 million cycles.

  • PDF

Parametric Study on Wing Design of Insect-mimicking Aerial Vehicle with Biplane Configuration (겹 날개를 사용하는 곤충 모방 비행체의 날개 형상에 대한 파라메트릭 연구)

  • Park, Heetae;Kim, Dongmin;Mo, Hyemin;Kim, Lamsu;Lee, Byoungju;Kim, Inrae;Kim, Seungkeun;Ryi, Jaeha;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.712-722
    • /
    • 2018
  • This paper conducts parametric studies on flapping wing design, one of the most important design parameters of insect-mimicking aerial vehicles. Experimental study on wing shape was done through comparison and analysis of thrust, pitching moment, power consumption, and thrust-to-power ratio. A two-axis balance and hall sensor measure force and moment, and flapping frequency, respectively. Wing configuration is biplane configuration which can develop clap and fling effect. A reference wing shape is a simplified dragonfly's wing and studies on aspect ratio and wing area were implemented. As a result, thrust, pitching moment, and power consumption tend to increase as aspect ratio and area increase. Also, it is found that the flapping mechanism was not normally operated when the main wing has an aspect ratio or area more than each certain value. Finally, the wing shape is determined by comparing thrust-to-power ratio of all wings satisfying the required minimum thrust. However, the stability is not secured due to moment generated by disaccord between thrust line and center of gravity. To cope with this, aerodynamic dampers are used at the top and bottom of the fuselage; then, indoor flight test was attempted for indirect performance verification of the parametric study of the main wing.

Characteristic of an insect-mimicking flapping device actuated by a piezoceramic actuator (압축하중을 받는 압전 작동기로 구동하는 곤충모방 날갯짓 기구의 특성)

  • Park, Hoon-Cheol;Quoc, Viet Nguyen;Byun, Do-Young;Goo, Nam-Seo;Yoon, Kwang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1063-1071
    • /
    • 2008
  • A piezoceramic unimoph actuator can produce a relatively larger actuation force and actuation displacement when a proper compressive load is applied during operation, because the compressive stress causes material nonlinear behavior in the piezoceramic layer and triggers mechanical buckling. In this paper, we examined effects of the actuator under compression on the flapping angle and aerodynamic force generation capability. Effects of wing shape and passive wing rotation angle on the aerodynamic force production were also investigated. The average vertical force acquired by a 2D CFD simulation for an artificial wing showed a good agreement with the measured one by the experiment.