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ABSTRACT

Multi-body spacecraft attitude and configuration control formulations based on the
use of collaborative control theory are considered. The control formulations are based
on two-player, nonzero-sum, differential game theory applied using a Nash strategy.
It is desired that the control laws allow different components of the multi-body sys-
tem to perform different tasks. For example, it may be desired that one body points
toward a fixed star while another body in the system slews to track another satel-
lite. Although similar to the linear quadratic regulator formulation, the collaborative
control formulation contains a number of additional design parameters because the
problem is formulated as two control problems coupled together. The use of the free-
dom of the partitioning of the total problem into two coupled control problems and
the selection of the elements of the cross-coupling matrices are specific problems ad-
dressed in this paper. Examples are used to show that significant improvement in
performance, as measured by realistic criteria, of collaborative control over conven-
tional linear quadratic regulator control can be achieved by using proposed design
guidelines.

Keywords: satellite dynamics, attitude control, optimal control

1. INTRODUCTION

Consider a spacecraft, equipped with both a pointing antenna and a tracking antenna that is
required to perform a rapid angular maneuvers. If no consideration is given to controlling the attitude
of the spacecraft during the large angle maneuver of the tracking antenna, the internal torque which
is commanded will induce significant excitation in the rest of the structure and the entire spacecraft
will rotate. In such a case an attitude control system is needed that based on proper consideration
of the rest of the components of the structure during the application of the command torque to the
tracking antenna. A principal objective is to reduce excitations induced in the remainder of the
structure.
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A conventional approach for designing a control law for the control of a multi-body structure is
to use linear quadratic regulator (LQR) theory with a properly chosen performance index in which
the states and controls are, in general; all‘coupled through the weighting matrices. For spacecraft
which have multiple components performing different and sometimes conflicting tasks, it would be
advantageous to have “communication” between the control systems which are involved in perform-
ing these tasks.

To achieve this communication, Collaborative Control Theory (hereinafter, CCT) which uses
control synthesis technique, has been proposed (Fitz-Coy 1990, Fitz-Coy & Cochran 1989). The
CCT is formulated using two-player nonzero-sum differential game theory. In this approach two
performance indices are defined such that the states and controls are selectively coupled. The two
performance indices are minimized by using a Nash strategy (Starr & Ho 1969a, 1969b, Foley
& Schmitendorf 1971, Krikelis & Rekasius 1971). In this paper, we provide a new collaborative
tracking control law. We also consider enforcement of additional design criteria in CCT by properly
changing the structures of the performance indices.

2. COLLABORATIVE TRACKING CONTROL

Collaborative control is based on N-player, nonzero-sum, linear quadratic, differential game the-
ory with strategies u},i = 1,2,..., N, which satisfy the following conditions on the cost functions,
J; of the players:

Ji(uiau;w")u}*\’) < Ji(uiau;r")u;—l?ui’--'7u7\1)’ 1<i< N.

Strategies satisfying the above conditions are known as Nash solution strategies (Starr & Ho 1969a,
1969b, Foley & Schmitendorf 1971, Krikelis & Rekasius 1971). Papavassilopoulos, Medanic, &
Cruz (1979) shows the existence of Nash strategies and solutions. The basic premise of this game is
that each of the N players has knowledge of the current state of the game, the dynamics involved in
the game and the “cost” involved for each player in the game.

Development of the CCT method is based on several assumptions: (1) only two - player games
are considered (N = 2), (2) the system is time invariant (This assumption results in algebraic Riccati
equations instead of differential Riccati equations), (3) the outputs are completely observable (This
assumption guarantees availability of full state feedback). Based on these assumptions, a typical
linear dynamic system can be represented in the state space form

X(t) = Ax(t) +Biuy (t) + Bous (t)
yvi(t) = Cix(t)
ya(t) = Ca2x(2) (D

where u; (£) and u(t) represent separate control inputs to the plant by players 1 and 2, respectively;
x(t) represents the plant’s state (current condition of the game); y; (t) and y(¢) represent the plant
outputs; and C; and C, are observation matrices. The nonzero-sum differential game is formulated
by allowing the controllers (players) to minimize quadratic performance indices J; and J», defined
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as

J1

00
/ (YTQI}H + u,'erulll + ugR12u2)dt
0

J2

o0
/ (vTQ3y2 + ul Raqu; + uj Ropup)dt @
0

where Q, Q5, R12, Ro1, are positive semi-definite matrices, and Ry and Ry, are positive definite
matrices. The advantage of using output vectors y; and y instead of the state vector x is that more
attention can be given to minimizing particular combinations of the state variables rather than to
minimizing all individual states. Equation (2) can be used to write the following conventional forms
of the performance indices

00
S o= / (xTQix; +ufRyyu; + ul Rypuy)dt
000
S = / (xF Q2x2 + uf Rojuy + uj Roguy)dt 3)
0

where Q; = CTQ}C; and Q; = CTQ3C,. The controls that satisfy the Nash strategy are linear
functions of the state variables (Fitz-Coy 1990, Starr & Ho 1969a, Foley & Schmitendorf 1971), that
is,

u; = -R;'BTP;x

u} = -Ry'BIP;x e
where P; and P, are solutions to the coupled algebraic Riccati equations (ARE’s).

-P;A-ATP, - Q, + P,B;R[!'BfP, +P,B;R,,;BIP;
+ P3B;R;BIP, - P,B,R;'Ri:R;, BIP, =0
+ P;B;R;'BL P, +P,B,R[!BTP,;

+ P;B;R;BfP, - P,B;R;'RyR;BIP, =0 (5

-PA-ATP, - Q,

The coupled ARE’s may be solved by using a Newton-Raphson-Kantorovich (NRK) algorithm (Fitz-
Coy 1990).

2.1 Track Collaborative Control
For our application we wish to have the system follow a prescribed state trajectory. To accom-
plish such tracking of desired motion, two new performance indices are introduced.

o= (xp—rp) Gi(xs ~ 1)
T
+0.5/ [(x —1)TQi(x — r) + ul Ry u; + ul Rizuy)dt
0
Jr = (xp—rp)TGa(xs —1p)

T
+0.5/ [(x —r)TQ2(x — r) + uTRa1uy + u Roou,dt 6)
0



110 CHO & COCHRAN

Here, r is the reference motion and T is final time. Also, Q;,Q2,R;2, Rz, and G are positive-
semi-definite matrices, and R;,, and Ry, are positive-definite matrices. Control inputs u; and u,
which minimize the performance indices (6) may also be expressed as linear functions of the state
X,

u; = ~-RIBITP;z+8))
u; = -RIBI(P;z+8S,) )

where the P; (i = 1, 2) are solutions of the coupled differential Riccati equations,

-P;A-ATP, -Q: + P;B;R[!BTP, + P,B;R;'BIP,

+ P;B:R;'BIP, - P;B,R;'R;:R;,'BIP, = P,
-P,A-ATP,-Q; + P;B,R;'BIP,+P,BR;!BTP,;

+ P;B:R;'B{P; - P,B;R 'R R!BTP, =P, (8

The additional functions S; (i = 1, 2) are the solutions to the differential equations,

(-AT + P,B,R'BT + P,B;R;!BI)S,

+(P1B:R;;BY — P,B,R;'R:RLEBI)S, +Qir =8,

(-AT + P,B,R'BT + P,B;R;'BI)S,

+(P2:B;R;{'Bf — P;B;R'Ro;RT,BY)S; + Qur =S, )
For the infinite-horizon problem, i.e., T— oo, the solutions to the coupled differential Riccati equa-
tions are constant matrices (Barnett 1975). Thus, Egs. (8) become coupled ARE. In case of T— oo,
solutions of Eqs. (9) are not available. However, for very large T (T~ 00), and for a constant ref-

erence track (fixed final state), a constant solution for S; is a good approximation (Athans & Felb
1966). Thus, here, Eqs. (9) will be approximated by

(-AT + P,B,R'Bf + P:B:R;,'BI)S,

+(P;B;R;;BI — P,B,RR>REBI)S, + Qir =0

(-AT +P;B;R;'BT + P,B;R;;'BI)S,

+(P:B1R!Bf - P;B;R 'R R BT)S; + Qor =0 (10)

The matrices S; and S, can be calculated easily using the solutions for the P;, since Egs. (10) are
simple, simultaneous linear equations for S; and S.

3. COMPARISON OF COLLABORATIVE CONTROL
AND LINEAR QUADRATIC REGULATOR CONTROL

3.1 Dynamic Model

Results obtained using CCT and LQR control strategies are compared in this section. Because
LQR is well established and widely used, such a comparison should reveal the potential of the CCT
control strategy.
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X

Figure 1. Flexible multi-body system.

A simple spacecraft model is shown in Fig. 1. The model consists of three bodies. Two (body
1 and body 2) are rigid and one (body 3) is flexible. The centers of mass of the labeled bodies,
C;,i = 1,2, and 3, are located at the geometric centers of the respective bodies. For the purpose of
gaining a better insight into the controlled dynamics, only planar motion is considered. The flexible
body is modeled as a “pined - free” Euler-Bernoulli beam. The state vector of this system is

X= (Y3 @17927 @3aqi7Yawlvw27w37Q1)T

Here, wq,ws, and w3 are the total angular rates of the respective bodies. The output vector for the
LQR is

y= (Y,@1,62,63,W)

In the output, w represents the total transverse displacement of the flexible body and is approxi-
mated by w = E?[(bj (x3)g;(t)] where ¢;(x3) is jt* mode shape function and g;(t) is generalized
coordinates.

The input and output vectors are divided into u; = (F1T1F3)T, uy = (T2T3)T,y; =
(YO,w)T, and y» = (©203)T respectively. The B and C matrices were divided accordingly
into By and B, and C; and Cs, respectively. The linearized equations are given in the appendix.

In the Newton-Raphson-Kantorovich iteration method, the selection of the initial guess is im-
portant for fast convergence. Since CCT strategy is comparable to LQR strategy (Fitz-Coy 1990),
the solution of the algebraic Riccati equation for LQR strategy should be a good initial guess for
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Table 1. Weight matrices.

(5 0 0 0 0 150 0 0 0 0
0 50 0 0 0 0 30 0 0 o0
Q*=[0 0 5 0 0|x10 R=| 0 0 60 0 0
0 0 6 5 0 0 0 0 120 0
[0 0 0 0 5 0 0 06 0 900
[5 0 0 1 o
=10 500 0 | x10° Q;:[O 1]><105
[0 0 5
10 0 0
Ry = 0 10 0 Rgs = [ 30 130 ]
0 0 20
1 0 0
Ry = [ (1) (1) ] Ro1 = 0 1 0
0 0 1

the solution to the corresponding coupled algebraic Riccati equation for the CCT strategy (Fitz-Coy
1990, Fitz-Coy & Cochran 1989). With the ARE solutions in hand, feedback gains are expressed as

K; = R;'BTp,
K, = R;'BIP, (11)
Then, the control laws are expressed as
uw, = K;x-RBTP,
uw; = Kyx-R;'BIP, (12)

3.2 Weighting Matrices and Performance Criteria

In the optimal control problem, the selection of weighting matrices plays a critical role in defin-
ing the “best” control law. Usually, for the multi - variable optimal control, there is no easy way
to obtain the weighting matrices for the “best” optimal solution. Table 1 contains the weighting
matrices used for this comparison that were used to get an idea of how LQR and CCT control differ.

The maneuver to be controlled is the simultaneous rotation of Body 2 by 5 degrees relative to
body 1 and body 3 by 5 degrees relative to body 2. The attitude of body 1 is to be maintained as
close to being fixed as possible with the given controller. Control is via three torques and two forces.
Torque T'; and force F; act on body 1; torques T4 and T3 act between bodies 1 and 2, and bodies 2
and 3, respectively. Force Fj acts on the tip of the flexible body 3. The final time is open. Specified
performance criteria are |©;| < 0.1°, and ©, and @3 both within 0.1° of 5° in 10 sec.

Simulation results for both LQR and CCT closed - loop systems are shown in Figs. 3 - 7. Both
the LQR controller and the CCT controller were “optimized” by carefully selecting the weighting
matrices. To compare the LQR and CCT results fairly, the magnitudes of the control inputs were
equalized. This is similar to the use of a unit step input for competitive controller tests in classical
control theory. Figures 3, 4, and 7 indicate that when the CCT controller is used, the amount of
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Figure 2. Comparison of performance error with different sets.

Table 2. Strategy set.

Strategy combination

set | 02,03, w—-Y,0;
set 2 Y,0:,03,w— 02
set 3 Y,0:,02,0;,w
set 4 Y,01,w—-0,,03

induced rotation of body 1 and the excitation of the flexible deformation of body 3 are much smaller
in magnitude than when the LQR controller is used. That is, if the individual control systems col-
laborate while performing their respective tasks, then induced motions are reduced.

4. EFFECT OF INFORMATION AVAILABLE ON PERFORMANCE

4.1 Selection of Strategy Sets for the “Best” Performance

One of the unique features of CCT is that it provides many choices of strategy sets. Here a
“strategy set” consists of two sub-sets of controls (player 1 and player 2). To present the general
idea of how to perform a strategy set selection, several example strategy sets are used in performing
the same task.
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Figure 3. Body one’s position and control force.
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Figure 4. Body one’s attitude and reaction wheel command.
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Figure 5. Body two’s angular displacement and torque.
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Figure 6. Body three’s angular displacement and torque.
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Figure 7. Body three’s transverse displacement and control force.
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Figure 8. Body one’s position and control force.
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Figure 9. Body one’s attitude and reaction wheel command.
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Figure 10. Body two’s angular displacement and torque.
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Figure 11. Body three’s angular displacement and torque.

To compare overall performances of strategy sets effectively, a particular performance error is
used. The performance error (E) is expressed as E = f0°° |X —Xy|dt. Figure 2 shows a compari-
son of the performance error for 4 different strategy sets (see Table 2). For a convenient comparison,
log[ E(LQR)/E(CC)] is used. The control goals are Yy = 0,0;7 = 0,055 = 5°,03; = 5°, and
Wr = 0.

By considering Fig. 2, it is seen that the strategy set (Y, @3, w — O3, ©3) should be selected as
the “best” strategy set from among all the others. It can be seen that : (1) CCT control law mainly
improved the performance of the set which has only induced motions (“perturbed set”). (2) The
set which has a specific motion to perform (“perturbing set”) is not significantly influenced by the
collaboration. Based on the above conclusions, the strategy set should be separated into a perturbing
sub-set and a perturbed sub-set for a conflicting task.

4.2 Optimal Performance Control

Another interesting and unique feature of CCT control is a strong sensitivity of performance
to the weight. The performance of the LQR controller is not significantly changed when the off -
diagonal term of the weighting matrices are changed. On the other hand, the performance of the
CCT controller is very sensitive to changes of the cross-coupling weight matrices R15 and Ry;. To
obtain the some insight regarding the relationship between cross-coupling weight and performances,
for sets of cross coupling weight matrices were used in Eq. 13. These were defined as

100
]xn, Ru=|01 0| xn (n=0,10,40,60) (13)
0 01

10

R”:[o 1
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Figure 12. Body three’s transverse displacement and control force.

Figures 8 -12 show that the time responses of outputs and inputs are dependent on the cross-coupling
weight matrices. In case of n = 10, the performances are best among the others. It is noticed that
input patterns are changed with cross-coupling weight. This pattern change produce a different
performance and the pattern change cannot be achieved without the cross-coupling weight. It should
be mentioned that in this paper, we investigate only the multiple of identity matrix for the cross-
coupling weight as an example. More detail investigation can be done for the best result.

5. CONCLUSION

Since the CCT is formulated by two-player nonzero-sum linear quadratic differential game the-
ory, communication between the players plays an important role in achieving “optimal” control.
In CCT, communication is accomplished by using two performance indices. The cross-coupling
weight matrices and the selection of a strategy set are the principal factors that determine how the
communication takes place. The proper selection of a strategy set results in a protocol for effective
communication. The cross-coupling weights determine the weight given by one player to the other
player expenditure of control effort.

In designing a control system using CCT, one can select a strategy set to match performance to
specific control objectives. Once the strategy set is selected, the designer can then find the “best”
performance control law by investigating the effect of different cross-coupling weight matrices. The
options to select strategy sets and the cross - coupling weight matrices gives a control designer the
flexibility to exercise a variety of control system designs that can be used to meet specific control
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system requirements.
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APPENDIX

Kinematic Equations
Linearized equations for translational motion of each body are expressed as (see Figure Al.)

miR; = Fpa + Fic
.. 1
my [R1 +wy X1 +u'12><§l‘2 =Fo +Fy3 (AD)
L »e
/ (R1 4wy Xrp 4wy Xy 4wy X X3+v'i'3)dm3 = F32+F3c)
0

Here, m; is the mass of body 7; wj is the angular velocity of body j; F21, Fog3, and F3, are constraint
forces; F. and F'3. are control forces on bodies 1 and 3 respectively; and C; and C are the center

of mass of bodies 1 and 2. R;, r;, rs, X3, 13, and wj are position vectors indicated in Fig. Al.
The rotational equations of this system are described as

I](Lll = T1 - T2 + [1‘1 X F12]

. 1 1
Lws =Ty — T3 + 5(—1'2) x Fa1 + T2 X F23] (A2)
L ) L
/ p3><(R1+u')1 ><r1+cb2xr2+cb3XX3+W3)dm=T3+/ p3XdF
0 [¢]

where p3 = X3 + wg and dF = F326(X3)dX3 + F3C(S(X3 - L)dX3 + fglasticdx& The disa
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Figure Al. Flexible 3-body model.

delta function and £§/25%¢ is a elastic force. The equations for the transverse vibration of body 3 are

L L L
/ ¢kdm3-(R1 +d)1 X1y +d)2><l'2)+/ ¢k'(6:)3XX3+W3)dm3 = / ¢de k= 1,2 (A3)
0 0 0

Linearized State-Space Form of the Equations
From Eqgs. (A1)-(A3), the following linearized equations of motion in matrix form are obtained.

M,xs + Kyx; = Dsu (Ad)

where x; = [Ywiwawsg]?, x1 = [Y0;02034¢:]T and u = [F1. T T2T3F3.]7. The matrices
M;, K;, and D; are mass, stiffness, and control influence matrices, respectively.
The state-space representation of the system is defined as

x(t) = Ax(t) + Bu(?)

(AS)
y(t) = Cx(¢)
where A, B, and C are expressed as
1 0 0 0
0 1 0 0O
A,

A= [ —M?IK o | A, =10 -1 1 00 (A6)

s 0 0 -1 10

0 0 0 01
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and O is the appropriate null matrix. The state-space representation for the CCT is defined as

SO O =

0

OO O

0

O OO

0

0 0 00
0 0 00
0 0 00
1 0 00
0 ¢:i(Ls) 0 0

x(t) = Ax(t) + Byuy(t) + Baus(t)
v1(t) = Cyx(t)
y2(t) = Cox(t)

(=T R e i e B an ]

[en i o T - B cn}

(oo I el ww B c}

[

(AT)

(A8)

In the case in which u; = (F;T,F3)T and u; = (T>T3)7, the B and C are divided accordingly
into By and By, and C;, and Cs, respectively.

In this paper, the length of bodies 1, 2 and 3 are 5, 5, and 2 m and masses of bodies 1, 2, and 3
are 100, 25, and 6 kg, respectively. For the elastic deformation model, the 1st mode is used. In Table
Al, M,, and D, matrices used this paper are given.

Table Al. M;, K;, and D, matrices.

K =

131.00
77.50
92.50

6.00

-0.91

0

QOO OO0 O0COOo
CO O OO0 OO0

77.50 92.50 6.00 —-0.91
402.08 231.25 15.00 -—2.27
231.25 358.33 30.00 —4.54
15.00 30.00 8.00 0.00
—2.2679 -—4.54 0.00 1.00
0 0 0
0 0 0
0 0 0
0 0 0
0 0 383.08
0 0 1
-1 0 2.5
1 -1 5
0 1 5
0 0 0.8165




