• 제목/요약/키워드: q-hypergeometric series

검색결과 47건 처리시간 0.02초

FRACTIONAL INTEGRATION AND DIFFERENTIATION OF THE (p, q)-EXTENDED BESSEL FUNCTION

  • Choi, Junesang;Parmar, Rakesh K.
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.599-610
    • /
    • 2018
  • We aim to present some formulas for Saigo hypergeometric fractional integral and differential operators involving (p, q)-extended Bessel function $J_{{\nu},p,q}(z)$, which are expressed in terms of Hadamard product of the (p, q)-extended Gauss hypergeometric function and the Fox-Wright function $_p{\Psi}_q(z)$. A number of interesting special cases of our main results are also considered. Further, it is emphasized that the results presented here, which are seemingly complicated series, can reveal their involved properties via those of the two known functions in their respective Hadamard product.

CERTAIN DECOMPOSITION FORMULAS OF GENERALIZED HYPERGEOMETRIC FUNCTIONS pFq AND SOME FORMULAS OF AN ANALYTIC CONTINUATION OF THE CLAUSEN FUNCTION 3F2

  • Choi, June-Sang;Hasanov, Anvar
    • 대한수학회논문집
    • /
    • 제27권1호
    • /
    • pp.107-116
    • /
    • 2012
  • Here, by using the symbolical method introduced by Burchnall and Chaundy, we aim at constructing certain expansion formulas for the generalized hypergeometric function $_pF_q$. In addition, using our expansion formulas for $_pF_q$, we present formulas of an analytic continuation of the Clausen hypergeometric function $_3F_2$, which are much simpler than an earlier known result. We also give some integral representations for $_3F_2$.

ON FOUR NEW MOCK THETA FUNCTIONS

  • Hu, QiuXia
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.345-354
    • /
    • 2020
  • In this paper, we first give some representations for four new mock theta functions defined by Andrews [1] and Bringmann, Hikami and Lovejoy [5] using divisor sums. Then, some transformation and summation formulae for these functions and corresponding bilateral series are derived as special cases of 2𝜓2 series $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a,c;q)_n}{(b,d;q)_n}}z^n$$ and Ramanujan's sum $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a;q)_n}{(b;q)_n}}z^n$$.

A NEW PROOF OF THE EXTENDED SAALSCHÜTZ'S SUMMATION THEOREM FOR THE SERIES 4F3 AND ITS APPLICATIONS

  • Choi, Junesang;Rathie, Arjun K.;Chopra, Purnima
    • 호남수학학술지
    • /
    • 제35권3호
    • /
    • pp.407-415
    • /
    • 2013
  • Very recently, Rakha and Rathie obtained an extension of the classical Saalsch$\ddot{u}$tz's summation theorem. Here, in this paper, we first give an elementary proof of the extended Saalsch$\ddot{u}$tz's summation theorem. By employing it, we next present certain extenstions of Ramanujan's result and another result involving hypergeometric series. The results presented in this paper are simple, interesting and (potentially) useful.

A PROOF OF THE MOST IMPORTANT IDENTITY INVOLVED IN THE BETA FUNCTION

  • Choi, June-Sang
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제4권1호
    • /
    • pp.71-76
    • /
    • 1997
  • A new proof of the well-known identity involved in the Beta function B(p, q) is given by using the theory of hypergeometric series and a brief history of Gamma function is also provided. The method here is shown to be able to apply to evaluate some definite integrals.

  • PDF

CERTAIN CLASSES OF INFINITE SERIES DEDUCIBLE FROM MELLIN-BARNES TYPE OF CONTOUR INTEGRALS

  • Choi, Junesang;Agarwal, Praveen
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제20권4호
    • /
    • pp.233-242
    • /
    • 2013
  • Certain interesting single (or double) infinite series associated with hypergeometric functions have been expressed in terms of Psi (or Digamma) function ${\psi}(z)$, for example, see Nishimoto and Srivastava [8], Srivastava and Nishimoto [13], Saxena [10], and Chen and Srivastava [5], and so on. In this sequel, with a view to unifying and extending those earlier results, we first establish two relations which some double infinite series involving hypergeometric functions are expressed in a single infinite series involving ${\psi}(z)$. With the help of those series relations we derived, we next present two functional relations which some double infinite series involving $\bar{H}$-functions, which are defined by a generalized Mellin-Barnes type of contour integral, are expressed in a single infinite series involving ${\psi}(z)$. The results obtained here are of general character and only two of their special cases, among numerous ones, are pointed out to reduce to some known results.

CERTAIN IDENTITIES ASSOCIATED WITH GENERALIZED HYPERGEOMETRIC SERIES AND BINOMIAL COEFFICIENTS

  • Lee, Keum-Sik;Cho, Young-Joon;Choi, June-Sang
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제8권2호
    • /
    • pp.127-135
    • /
    • 2001
  • The main object of this paper is to present a transformation formula for a finite series involving $_3F_2$ and some identities associated with the binomial coefficients by making use of the theory of Legendre polynomials $P_{n}$(x) and some summation theorems for hypergeometric functions $_pF_q$. Some integral formulas are also considered.

  • PDF