East Asian Math. J.
Vol. 33 (2017), No. 5, pp. 527-531
http://dx.doi.org/10.7858/eamj.2017.036

REMARK ON A SUMMATION FORMULA FOR THE SERIES

${ }_{4} F_{3}(1)$

Junesang Choi*, Yashoverdhan Vyas and Arjun K. Rathie

Abstract. We aim to prove a known summation formula for the series ${ }_{4} F_{3}(1)$ by mainly using a similar method as in [2], which is different from that in [3]. The method of proof here as well as that in [2] is potentially useful in getting some other summation formulas for ${ }_{p} F_{q}$.

1. Introduction

Throughout this paper, let ${ }_{p} F_{q}$ denote the generalized hypergeometric series (see, for details, e.g., [6], [7], [8, Section 1.5]). We begin by recalling the following two summation formulas for the series ${ }_{3} F_{2}$ and ${ }_{4} F_{3}$ (see, e.g., [7, p. 245])

$$
{ }_{3} F_{2}\left[\begin{array}{rr}
a, 1+\frac{1}{2} a, b ; & -1 \tag{1.1}\\
\frac{1}{2} a, 1+a-b ; & -1
\end{array}\right]=\frac{\Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma(1+a-b)}{\Gamma(1+a) \Gamma\left(\frac{1}{2}+\frac{1}{2} a-b\right)}
$$

and

$$
\begin{align*}
{ }_{4} F_{3} & {\left[\begin{array}{c}
a, 1+\frac{1}{2} a, b, c ; \\
\frac{1}{2} a, 1+a-b, 1+a-c ; 1
\end{array}\right] } \\
& =\frac{\Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma(1+a-b) \Gamma(1+a-c) \Gamma\left(\frac{1}{2}+\frac{1}{2} a-b-c\right)}{\Gamma(1+a) \Gamma\left(\frac{1}{2} a-b+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} a-c+\frac{1}{2}\right) \Gamma(1+a-b-c)} . \tag{1.2}
\end{align*}
$$

For our present investigation, we also recall the following two summation formulas due to Kim et al. [3]:

$$
\begin{align*}
& { }_{3} F_{2}\left[\begin{array}{c}
a, b, 1+d ;-1 \\
1+a-b, d ;-1
\end{array}\right] \\
& \quad=\left(1-\frac{a}{2 d}\right) \frac{\Gamma\left(1+\frac{1}{2} a\right) \Gamma(1+a-b)}{\Gamma(1+a) \Gamma\left(1+\frac{1}{2} a-b\right)}+\frac{a}{2 d} \cdot \frac{\Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma(1+a-b)}{\Gamma(1+a) \Gamma\left(\frac{1}{2} a-b+\frac{1}{2}\right)} \tag{1.3}
\end{align*}
$$

[^0]and
\[

$$
\begin{align*}
{ }_{4} F_{3} & {\left[\begin{array}{r}
a, b, c, d+1 ; \\
1+a-b, 1+a-c, d ; 1
\end{array}\right] } \\
& =\left(1-\frac{a}{2 d}\right) \frac{\Gamma\left(1+\frac{1}{2} a\right) \Gamma(1+a-b) \Gamma(1+a-c) \Gamma\left(1+\frac{1}{2} a-b-c\right)}{\Gamma(1+a) \Gamma(1+a-b-c) \Gamma\left(1+\frac{1}{2} a-b\right) \Gamma\left(1+\frac{1}{2} a-c\right)} \\
& +\frac{a}{2 d} \cdot \frac{\Gamma\left(\frac{1}{2}+\frac{1}{2} a\right) \Gamma(1+a-b) \Gamma(1+a-c) \Gamma\left(\frac{1}{2}+\frac{1}{2} a-b-c\right)}{\Gamma(1+a) \Gamma(1+a-b-c) \Gamma\left(\frac{1}{2}+\frac{1}{2} a-b\right) \Gamma\left(\frac{1}{2}+\frac{1}{2} a-c\right)} \tag{1.4}
\end{align*}
$$
\]

Remark 1. The identities (1.1) and (1.2) are obvious special cases of (1.3) and (1.4), respectively. Taking the limit in (1.4) as $c \rightarrow \infty$ yields (1.3).

Setting $b=-n\left(n \in \mathbb{N}_{0}\right)$ in (1.3) and (1.4), respectively, we obtain the following interesting identities:

$$
\begin{align*}
{ }_{3} F_{2} & {\left[\begin{array}{c}
-n, b, 1+d ;-1 \\
1+a+n, d ;-1
\end{array}\right] } \\
& =\left(1-\frac{a}{2 d}\right) \frac{(1+a)_{n}}{\left(1+\frac{1}{2} a\right)_{n}}+\frac{a}{2 d} \cdot \frac{(1+a)_{n}}{\left(\frac{1}{2} a+\frac{1}{2}\right)_{n}} \tag{1.5}
\end{align*}
$$

and

$$
\begin{align*}
{ }_{4} F_{3} & {\left[\begin{array}{r}
-n, a, b, d+1 ; \\
1+a+n, 1+a-b, d ;
\end{array}\right] } \\
= & \left(1-\frac{a}{2 d}\right) \frac{(1+a)_{n}\left(1+\frac{1}{2} a-c\right)_{n}}{\left(1+\frac{1}{2} a\right)_{n}(1+a-c)_{n}} \tag{1.6}\\
& +\frac{a}{2 d} \cdot \frac{(1+a)_{n}\left(\frac{1}{2}+\frac{1}{2} a-c\right)_{n}}{\left(\frac{1}{2} a+\frac{1}{2}\right)_{n}(1+a-c)_{n}} .
\end{align*}
$$

Here and in the following, let \mathbb{C}, \mathbb{N} and \mathbb{Z}_{0}^{-}be the sets of complex numbers, positive integers and non-positive integers, respectively, and let $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$.

Kim et al. [3] established the result (1.3) with the help of classical Kummer's summation theorem and its contiguous results in [5] and established the result (1.4) with the help of classical Dixon's summation theorem and its contiguous result in [4]. Very recently, Choi et al. [2] have proved an extended Watson's summation theorem for the series ${ }_{4} F_{3}(1)$ in [3] by mainly using a known summation formula for ${ }_{3} F_{2}(1 / 2)$. Here, similarly as in [2], we aim to prove (1.4) by mainly using (1.3).

2. Derivation of (1.4)

Let \mathcal{L} be the left side of (1.4). Expressing ${ }_{4} F_{3}$ as the series, we obtain

$$
\begin{equation*}
\mathcal{L}=\sum_{k=0}^{\infty} \frac{(-1)^{k}(a)_{k}(b)_{k}(1+d)_{k}}{(1+a-b)_{k}(d)_{k} k!}\left\{\frac{(-1)^{k}(c)_{k}}{(1+a-c)_{k}}\right\} \tag{2.1}
\end{equation*}
$$

where $(\lambda)_{n}$ is the Pochhammer symbol defined (for $\lambda \in \mathbb{C}$) by (see [8, p. 2 and pp. 4-6]):

$$
\begin{align*}
(\lambda)_{n}: & = \begin{cases}1 & (n=0) \\
\lambda(\lambda+1) \ldots(\lambda+n-1) & (n \in \mathbb{N})\end{cases} \tag{2.2}\\
& =\frac{\Gamma(\lambda+n)}{\Gamma(\lambda)} \quad\left(\lambda \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}\right),
\end{align*}
$$

where Γ is the familiar Gamma function.
Using the following identity (cf., [6, p. 69, Exercise 5])

$$
{ }_{2} F_{1}\left[\begin{array}{c}
-k, a+k ; \\
1+a-c ;
\end{array}\right]=\frac{(-1)^{k}(c)_{k}}{(1+a-c)_{k}} \quad\left(k \in \mathbb{N}_{0}\right)
$$

in (2.1), we have

$$
\mathcal{L}=\sum_{k=0}^{\infty} \frac{(-1)^{k}(a)_{k}(b)_{k}(1+d)_{k}}{(1+a-b)_{k}(d)_{k} k!}{ }_{2} F_{1}\left[\begin{array}{c}
-k, a+k ; \tag{2.3}\\
1+a-c ;
\end{array}\right] .
$$

Expressing ${ }_{2} F_{1}$ in (2.3) as the series, we get

$$
\mathcal{L}=\sum_{k=0}^{\infty} \sum_{m=0}^{k} \frac{(-1)^{k}(a)_{k}(b)_{k}(1+d)_{k}(-k)_{m}(a+k)_{m}}{(1+a-b)_{k}(d)_{k}(1+a-c)_{m} k!m!},
$$

which, upon using the identities

$$
\begin{equation*}
(\alpha)_{k}(\alpha+k)_{m}=(\alpha)_{k+m} \quad\left(\alpha \in \mathbb{C} ; k, m \in \mathbb{N}_{0}\right) \tag{2.4}
\end{equation*}
$$

and

$$
(-k)_{m}=\frac{(-1)^{m} k!}{(k-m)!}
$$

yields

$$
\begin{equation*}
\mathcal{L}=\sum_{k=0}^{\infty} \sum_{m=0}^{k} \frac{(-1)^{k+m}(a)_{k+m}(b)_{k}(1+d)_{k}}{(1+a-b)_{k}(1+a-c)_{m}(d)_{k} m!(k-m)!} \tag{2.5}
\end{equation*}
$$

Applying the following formal manipulation of double series (see, e.g., [1], [6, p. 57, Lemma 10(2)])

$$
\sum_{k=0}^{\infty} \sum_{m=0}^{k} A(m, k)=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} A(m, k+m)
$$

we obtain

$$
\begin{equation*}
\mathcal{L}=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^{k}(a)_{k+2 m}(b)_{k+m}(1+d)_{k+m}}{(1+a-b)_{k+m}(d)_{k+m}(1+a-c)_{m} m!k!} . \tag{2.6}
\end{equation*}
$$

Using (2.4) in (2.6), we get

$$
\begin{aligned}
\mathcal{L}= & \sum_{m=0}^{\infty} \frac{(a)_{2 m}(b)_{m}(1+d)_{m}}{(1+a-b)_{m}(1+a-c)_{m}(d)_{m} m!} \\
& \times \sum_{k=0}^{\infty} \frac{(-1)^{k}(a+2 m)_{k}(b+m)_{k}(1+d+m)_{k}}{(1+a-b+m)_{k}(d+m)_{k} k!},
\end{aligned}
$$

which, upon expressing the inner series as ${ }_{3} F_{2}$, gives

$$
\begin{align*}
\mathcal{L}= & \sum_{m=0}^{\infty} \frac{(a)_{2 m}(b)_{m}(1+d)_{m}}{(1+a-b)_{m}(1+a-c)_{m}(d)_{m} m!} \tag{2.7}\\
& \times{ }_{3} F_{2}\left[\begin{array}{r}
a+2 m, b+m, 1+d+m ; \\
1+a-b+m, d+m
\end{array},-1\right] .
\end{align*}
$$

Finally, using (1.3) to evaluate the ${ }_{3} F_{2}$ in (2.7), after some simplification, we find that the resulting right side of (2.7) leads to the right side of (1.4).

Acknowledgments. The authors would like to express their deep-felt thanks for the reviewers' helpful comments.

References

[1] J. Choi, Notes on formal manipulations of double series, Commun. Korean Math. Soc. 18(4) (2003), 781-789.
[2] J. Choi, V. Rohira and A. K. Rathie, Note on the extended Watson's summation theorem for the series ${ }_{4} F_{3}(1)$, (2017), submitted.
[3] Y. S. Kim, M. A. Rakha and A. K. Rathie, Extensions of certain classical summation theorems for the series ${ }_{2} F_{1},{ }_{3} F_{2}$ and ${ }_{4} F_{3}$ with applications in Ramanujan's summations, Int. J. Math. Math. Sci. 2010 (2010), Article ID 309503, 26 pages.
[4] J. L. Lavoie, F. Grondin, A. K. Rathie, and K. Arora, Generalizations of Dixon's theorem on the sum of a ${ }_{3} F_{2}$, Math. Comput. 62 (1994), 267-276.
[5] J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Whipple's theorem on the sum of a ${ }_{3} F_{2}$, J. Comput. Appl. Math. 72 (1996), 293-300.
[6] E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
[7] L.J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.
[8] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.

Junesang Choi

Department of Mathematics, Dongguk University, Gyeonguu 38066, Republic of Korea

E-mail address: junesang@mail.dongguk.ac.kr
Yashoverdhan Vyas
Department of Mathematics, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur, 313601, Rajasthan State, India

E-mail address: yashoverdhan.vyas@spsu.ac.in

Arjun K. Rathie
Department of Mathematics, School of Physical sciences, Central University of Kerala, Periye P.O., Kasaragod-671316, Kerala, India

E-mail address: akrathie@cukerala.ac.in

[^0]: Received August 29, 2017; Accepted September 19, 2017.
 2010 Mathematics Subject Classification. 33C20.
 Key words and phrases. Gamma function; Pochhammer symbol; Generalized hypergeometric function ${ }_{p} F_{q}$; Summation formulas for ${ }_{p} F_{q}$.

 * Corresponding author.

