• 제목/요약/키워드: q)-Stirling numbers of the second kind

검색결과 18건 처리시간 0.021초

A NOTE ON q-ANALOGUE OF POLY-BERNOULLI NUMBERS AND POLYNOMIALS

  • Hwang, Kyung Won;Nam, Bo Ryeong;Jung, Nam-Soon
    • Journal of applied mathematics & informatics
    • /
    • 제35권5_6호
    • /
    • pp.611-621
    • /
    • 2017
  • In this paper, we define a q-analogue of the poly-Bernoulli numbers and polynomials which is generalization of the poly Bernoulli numbers and polynomials including q-polylogarithm function. We also give the relations between generalized poly-Bernoulli polynomials. We derive some relations that are connected with the Stirling numbers of second kind. By using special functions, we investigate some symmetric identities involving q-poly-Bernoulli polynomials.

AN EXTENSION OF GENERALIZED EULER POLYNOMIALS OF THE SECOND KIND

  • Kim, Y.H.;Jung, H.Y.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • 제32권3_4호
    • /
    • pp.465-474
    • /
    • 2014
  • Many mathematicians have studied various relations beween Euler number $E_n$, Bernoulli number $B_n$ and Genocchi number $G_n$ (see [1-18]). They have found numerous important applications in number theory. Howard, T.Agoh, S.-H.Rim have studied Genocchi numbers, Bernoulli numbers, Euler numbers and polynomials of these numbers [1,5,9,15]. T.Kim, M.Cenkci, C.S.Ryoo, L. Jang have studied the q-extension of Euler and Genocchi numbers and polynomials [6,8,10,11,14,17]. In this paper, our aim is introducing and investigating an extension term of generalized Euler polynomials. We also obtain some identities and relations involving the Euler numbers and the Euler polynomials, the Genocchi numbers and Genocchi polynomials.

ON p, q-DIFFERENCE OPERATOR

  • Corcino, Roberto B.;Montero, Charles B.
    • 대한수학회지
    • /
    • 제49권3호
    • /
    • pp.537-547
    • /
    • 2012
  • In this paper, we define a $p$, $q$-difference operator and obtain an explicit formula which is used to express the $p$, $q$-analogue of the unified generalization of Stirling numbers and its exponential generating function in terms of the $p$, $q$-difference operator. Explicit formulas for the non-central $q$-Stirling numbers of the second kind and non-central $q$-Lah numbers are derived using the new $q$-analogue of Newton's interpolation formula. Moreover, a $p$, $q$-analogue of Newton's interpolation formula is established.

ON THE (p, q)-POLY-KOROBOV POLYNOMIALS AND RELATED POLYNOMIALS

  • KURT, BURAK;KURT, VELI
    • Journal of applied mathematics & informatics
    • /
    • 제39권1_2호
    • /
    • pp.45-56
    • /
    • 2021
  • D.S. Kim et al. [9] considered some identities and relations for Korobov type numbers and polynomials. In this work, we investigate the degenerate Korobov type Changhee polynomials and the (p,q)-poly-Korobov polynomials. We give a generalization of the Korobov type Changhee polynomials and the (p,q) poly-Korobov polynomials. We prove some properties and identities and explicit relations for these polynomials.

UNIFIED APOSTOL-KOROBOV TYPE POLYNOMIALS AND RELATED POLYNOMIALS

  • Kurt, Burak
    • 대한수학회보
    • /
    • 제58권2호
    • /
    • pp.315-326
    • /
    • 2021
  • Korobov type polynomials are introduced and extensively investigated many mathematicians ([1, 8-10, 12-14]). In this work, we define unified Apostol Korobov type polynomials and give some recurrences relations for these polynomials. Further, we consider the q-poly Korobov polynomials and the q-poly-Korobov type Changhee polynomials. We give some explicit relations and identities above mentioned functions.

A NOTE ON THE GENERALIZED BERNOULLI POLYNOMIALS WITH (p, q)-POLYLOGARITHM FUNCTION

  • JUNG, N.S.
    • Journal of applied mathematics & informatics
    • /
    • 제38권1_2호
    • /
    • pp.145-157
    • /
    • 2020
  • In this article, we define a generating function of the generalized (p, q)-poly-Bernoulli polynomials with variable a by using the polylogarithm function. From the definition, we derive some properties that is concerned with other numbers and polynomials. Furthermore, we construct a special functions and give some symmetric identities involving the generalized (p, q)-poly-Bernoulli polynomials and power sums of the first integers.

q-ADDITION THEOREMS FOR THE q-APPELL POLYNOMIALS AND THE ASSOCIATED CLASSES OF q-POLYNOMIALS EXPANSIONS

  • Sadjang, Patrick Njionou
    • 대한수학회지
    • /
    • 제55권5호
    • /
    • pp.1179-1192
    • /
    • 2018
  • Several addition formulas for a general class of q-Appell sequences are proved. The q-addition formulas, which are derived, involved not only the generalized q-Bernoulli, the generalized q-Euler and the generalized q-Genocchi polynomials, but also the q-Stirling numbers of the second kind and several general families of hypergeometric polynomials. Some q-umbral calculus generalizations of the addition formulas are also investigated.

A NOTE ON q-ANALOGUE OF POLY-EULER POLYNOMIALS AND ARAKAWA-KANEKO TYPE ZETA FUNCTION

  • KIM, YOUNG ROK;LEE, HUI YOUNG;KIM, AHYUN
    • Journal of applied mathematics & informatics
    • /
    • 제38권5_6호
    • /
    • pp.611-623
    • /
    • 2020
  • In this paper, we define a q-analogue of the poly-Euler numbers and polynomials which is generalization of the poly Euler numbers and polynomials including q-analogue of polylogarithm function. We also give the relations between generalized poly-Euler polynomials. Furthermore, we introduce zeta fuctions of Arakawa-Kaneko type and talk their properties and the relation with q-analogue of poly-Euler polynomials.