• 제목/요약/키워드: pythagorean proposition

검색결과 4건 처리시간 0.015초

피타고라스의 정리 III : 등각사각형의 관점에서 (Pythagorean Theorem III : From the perspective of equiangular quadrilaterals)

  • 조경희
    • 한국수학사학회지
    • /
    • 제33권3호
    • /
    • pp.155-165
    • /
    • 2020
  • Pythagorean theorem is a proposition on the relationship between the lengths of three sides of a right triangle. It is well known that Pythagorean theorem for Euclidean geometry deforms into an interesting form in non-Euclidean geometry. In this paper, we investigate a new perspective that replaces right triangles with 'proper triangles' so that Pythagorean theorem extends to non-Euclidean geometries without any modification. This is seen from the perspective that a rectangle is an equiangular quadrilateral, and a right triangle is a half of a rectangle. Surprisingly, a proper triangle (defined by Paolo Maraner), which is a half of an equiangular quadrilateral, satisfies Pythagorean theorem in many geometries, including hyperbolic geometry and spherical geometry.

피타고라스의 정리 II : 평행공리와의 관계 (Pythagorean Theorem II : Relationship to the Parallel Axiom)

  • 조경희;양성덕
    • 한국수학사학회지
    • /
    • 제32권5호
    • /
    • pp.241-255
    • /
    • 2019
  • The proposition that the parallel axiom and the Pythagorean theorem are equivalent in the Hilbert geometry is true when the Archimedean axiom is assumed. In this article, we examine some specific plane geometries to see the existence of the non-archimidean Hilbert geometry in which the Pythagorean theorem holds but the parallel axiom does not. Furthermore we observe that the Pythagorean theorem is equivalent to the fact that the Hilbert geometry is actually a semi-Euclidean geometry.

피타고라스 정리의 일반화에 관한 고찰 (The Study of the Generalization for Pythagorean Theorem)

  • 윤대원;김동근
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제24권1호
    • /
    • pp.221-234
    • /
    • 2010
  • 현재 알려진 피타고라스의 정리의 증명은 370여 가지가 될 정도로 다양한 증명 방법이 소개되고 있으며 이를 통해 증명 방법의 분석에 대한 많은 연구가 이루어지고 있다. 하지만 피타고라스의 정리의 일반화에 관한 연구는 부족한 실정이다. 따라서 본 연구에서는 유클리드 '원론'의 1권 명제47에 제시된 내용을 바탕으로 수학적 자료 즉, 데이터(길이, 넓이, 각의 크기 등)를 추출하여 학교수학 및 문헌 연구를 통해 피타고라스 정리의 일반화에 관한 다양한 방법을 고찰하였다.

수학교육에서 상보성 (Complementarity in Mathematics Education)

  • 강현영;이동환
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제17권4호
    • /
    • pp.437-452
    • /
    • 2007
  • 그동안 수학교육에서는 상보성, 상보적 원리, 상보적 접근이라는 말이 자주 사용되어 왔으나 그 의미가 분명하지 않았다. 따라서 이 글에서는 수학적 지식의 상보적 특성을 살펴봄으로써 그 의미를 명확히 하고자 하였다. 먼저 일반적인 상보성의 의미를 살펴보고, 통약불가능성과 제논의 역설을 통해 수학적 개념의 상보적 특징을 고찰하도록 한다. 이를 바탕으로 학교수학에서 상보적인 접근을 고찰하였다. 학교수학에서 수학적 개념에 대한 상보적 특성을 이해하고 드러내는 것은 그 개념에 대한 통찰을 가능하게 하고 명확하고 올바로 이해하게 한다. 따라서 학생들은 단편적인 정보와 규칙의 기계적인 적용이 아닌 살아있는 체계로서 수학의 이미지를 가질 수 있다.

  • PDF