• Title/Summary/Keyword: pyroelectric infrared (PIR) sensor

Search Result 17, Processing Time 0.028 seconds

A Design of Standing Human Body Sensing System Using Rotation of a PIR Sensor (초전형 적외선 센서 회전방식을 이용한 정지 인체 감지 시스템에 관한 연구)

  • Cha, Hyeong-Woo;Cho, Min-Yyeong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.129-136
    • /
    • 2016
  • A novel sensing system for standing and moving human body using PIR(pyroelectric infrared) sensor was development. The system consists of power supply, interface circuit of PIR sensor, small stepping motor, and digital control. The detecting principle for stop human body is detecting the human body when the stepping motor sticking the PIR sensor and the fresnel lens has rotated by 180 degree at six second and has stopped the motor for no detecting signal of human body. We developed control algorism for proposed the detection system. The experimentation shows that the detector system had detected length and angle were 6m and 30 degree against as standing and moving human body with $37^{\circ}C$.

Effect of P(VDF/TrFE) Film Thickness on the Characteristics of Pyroelectric Passive Infrared Ray Sensor for Human Body Detection (P(VDF/TrFE) 필름의 두께에 따른 인체 감지형 초전형 PIR 적외선 센서의 특성)

  • Kwon, Sung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.114-117
    • /
    • 2011
  • A thick 25 ${\mu}m$ thickness poled P(VDF/TrFE) film pyroelectric infrared ray sensor has been fabricated and then thin 1.6 ${\mu}m$ thickness P(VDF/TrFE) film pyroelectric infrared ray sensor has been fabricated also. These thick and thin P(VDF/TrFE) film pyroelectric infrared ray sensor was mounted in TO-5 housing to detect infrared light of 5.5 ~ 14 ${\mu}m$ wavelength for human body detecting with each other. The noise output voltage of the thick P(VDF/TrFE) film pyroelectric infrared ray sensor were 380 mV and NEP(noise equivalent power) is $3.95{\times}10^{-7}$ W which is the similar value with the commercial pyroelectric infrared ray sensor using ceramic materials as a sensing material. The NEP and specific detectivity $D^*$ of the thin P(VDF/TrFE) film pyroelectric infrared ray sensor were $2.13{\times}10^{-8}$ W and $9.37{\times}106$ cm/W under emission energy of 13 ${\mu}W/cm^2$ respectively. These result caused by lower thermal diffusion coefficient of a thin 1.6 ${\mu}m$ thickness PVDF/TrFE film than the thick 25 ${\mu}m$ thickness poled P(VDF/TrFE) film pyroelectric infrared ray sensor.

Development of PIR Sensor Based Indoor Location Detection System for Smart Home (스마트 홈을 위한 PIR 센서 기반 댁내 위치 인식 시스템 개발)

  • Ha, Kyoung-Nam;Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.905-911
    • /
    • 2006
  • Smart homes are expected to offer various intelligent services by recognizing the residents' life pattern, health, and feeling. One of the key issues for realizing the smart home is how to detect the locations of residents. Currently, the research effort is focused on two approaches: terminal-based and non-terminal-based method. The terminal-based method employs a type of device that should be carried by the resident while the non-terminal-based method has no such device. This paper presents a novel non-terminal-based approach using an array of pyroelectric infrared sensors (PIRs) that can detect residents. The feasibility of the system is evaluated experimentally on a test bed.

Reduction of False Alarm Signals for PIR Sensor in Realistic Outdoor Surveillance

  • Hong, Sang Gi;Kim, Nae Soo;Kim, Whan Woo
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.80-88
    • /
    • 2013
  • A passive infrared or pyroelectric infrared (PIR) sensor is mainly used to sense the existence of moving objects in an indoor environment. However, in an outdoor environment, there are often outbreaks of false alarms from environmental changes and other sources. Therefore, it is difficult to provide reliable detection outdoors. In this paper, two algorithms are proposed to reduce false alarms and provide trustworthy quality to surveillance systems. We gather PIR signals outdoors, analyze the collected data, and extract the target features defined as window energy and alarm duration. Using these features, we model target and false alarms, from which we propose two target decision algorithms: window energy detection and alarm duration detection. Simulation results using real PIR signals show the performance of the proposed algorithms.

Development of Standing and Moving Human Body Sensing Module Using a Chopper of Shutter Method (셔터방식의 쵸퍼를 이용한 정지 및 이동인체 감지 모듈 개발)

  • Cha, Hyeong-Woo;Lee, Won-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.109-116
    • /
    • 2016
  • Sensing module of standing and moving human body using shutter method was developed. The module consists of Fresnel lens, pyroelectric infrared (PIR) sensor, interface circuit of the PIR, micro control unit(MCU), and alarm light emitting diode(LED). The principle for standing human body is chopping the thermal of human body using camera shutter. The human sensing signal in MCU by algorithm of interrupt function is detected. By unifying an apparatus and print circuit board(PCB), the developed module can be replaced as commercial moving human body detector. Experiment results show that sensing distance is about 7.0m and sensing angles is about $110^{\circ}$ at room temperature. In these condition, sending ratio was 100% and the power dissipation of the module was 100mW.

Intruder Detection System Based on Pyroelectric Infrared Sensor (PIR 센서 기반 침입감지 시스템)

  • Jeong, Yeon-Woo;Vo, Huynh Ngoc Bao;Cho, Seongwon;Cuhng, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.361-367
    • /
    • 2016
  • The intruder detection system using digital PIR sensor has the problem that it can't recognize human correctly. In this paper, we suggest a new intruder detection system based on analog PIR sensor to get around the drawbacks of the digital PIR sensor. The analog type PIR sensor emits the voltage output at various levels whereas the output of the digitial PIR sensor is binary. The signal captured using analog PIR sensor is sampled, and its frequency feature is extracted using FFT or MFCC. The extracted features are used for the input of neural networks. After neural network is trained using various human and pet's intrusion data, it is used for classifying human and pet in the intrusion situation.

A Wireless Sensor Network Systems to Identify User and Detect Location Transition for Smart Home (지능형 주택을 위한 구성원 식별 및 위치 이동 감지 센서 네트워크 시스템)

  • Lee, Seon-Woo;Yang, Seung-Yong
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.396-402
    • /
    • 2010
  • The tracking of current location of residents is an essential requirement for context-aware service of smart houses. This paper presents a wireless sensor network system which could detect location transition such as entrance and exit to a room and also identify the user who passed the room, without duty of wearing any sort of tag. We designed new sensor node to solve the problem of short operation lifetime of previous work[1] which has two pyroelectric infrared (PIR) sensors and an ultrasonic sensor, as well as a 2.4 GHz radio frequency wireless transceiver. The proposed user identification method is to discriminate a person based on his/her height by using an ultrasonic sensor. The detection idea of entering/exiting behavior is based on order of triggering of two PIR sensors. The topology of the developed wireless sensor network system is simple star structure in which each sensor node is connected to one sink node directly. We evaluated the proposed sensing system with a set of experiments for three subjects in a model house. The experimental result shows that the averaged recognition rate of user identification is 81.3% for three persons. and perfect entering/exiting behavior detection performance.

Development of a Sensor-Based LED Lighting System with Low Standby Power (대기전력 저감형 LED 센서 조명시스템의 개발)

  • Kim, Jin-Geun;Kang, Moon-Sung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.18-22
    • /
    • 2012
  • In this paper, we propose a sensor-based LED lighting system that can significantly reduce standby powers. The proposed LED lighting system has the more advanced power circuit and control mechanism compared to existing one. The whole power circuit consists of two subcircuits. One is designed to apply electric powers to controller, PIR(Pyroelectric Infrared Ray) sensor and CdS, and the other one is designed to apply electric powers to LED module. Such a power circuit configuration makes the standby powers reduction of LED lighting system possible. From the experimental results, we confirmed that the standby powers saving performance of the developed power circuit is superior to that of the conventional one.

A Human Body Sensing POWER LED Drive Circuit Using Constant-Current IC and PIR Sensor (PIR 센서와 정전류 IC를 이용한 인체 감지형 POWER LED 구동 회로)

  • Park, Chong-Yeun;Yoo, Jin-Wan;Choi, Wang-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2295-2296
    • /
    • 2008
  • 본 논문에서는 에너지 절감을 위하여 POWER LED 구동회로를 PIR(Pyroelectric Infrared Ray) 센서를 이용하여 ON/OFF 제어를 하였다. POWER LED의 전류 특성을 설명하였으며 설명된 전류 특성을 개선하고자 정전류 유지 회로를 구성하였다. 그리고 인체 감지 센서에서 발생되는 ON/OFF 신호를 증폭시키는 구동 회로를 설계하여 정전류 유지 회로에 직접 결합하는 방식을 제안하였다. 실험한 결과는 POWER LED의 ON 상태시 4Watt, OFF 상태시 0.5Watt를 소비하였으며, 정전류 유지 회로에 의해 POWER LED 구동 전류의 리플이 줄어들어 안정적인 동작을 하는 것으로 나타났다.

  • PDF