• Title/Summary/Keyword: pv module

Search Result 599, Processing Time 0.025 seconds

Performance Simulation Results for Photovoltaic Module Modeling (PV모듈 모델링에 의한 성능모의 결과비교)

  • So, Jung-Hun;Yu, Byung-Gyu;Hwang, Hye-Mi;Yu, Gwon-Jong;Choi, Ju-Yeop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1988-1993
    • /
    • 2008
  • Photovoltaic (PV) modules operate over a large range of conditions but manufacturer's information is not sufficient to determine their overall performance. Designers need a reliable tool to predict energy production from a photovoltaic module under all conditions in order to make a sound decision. The modeling method of photovoltaic (PV) module are useful to perform detailed analysis of PV system performance for changing meteorological conditions, verify actual rated power of PV system sizing and determine the optimal design of PV system and components. This paper indicates a modeling approach of PV module performance in terms of meteorological conditions and identifies validity of PV modules modeling by comparing measured with simulated value.

Operation Technology of PV-ESS Integrated Module for DC Micro Grid with Constant Power Tracking Algorithm (일정 전력 추종 알고리즘이 적용된 DC 마이크로 그리드용 PV-ESS 통합형 모듈의 운영 기술)

  • Ryu, Kyung;Kim, Jun-Mo;Lee, Jeong;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.433-441
    • /
    • 2020
  • This study proposes a constant power tracking algorithm to compensate for the intermittent characteristics of Photovoltaic connected to a DC micro grid. A PV-ESS integrated module in which distributed ESS is additionally connected is utilized for the proposed algorithm. PV performs P&O MPPT control at all times. To supplement the intermittent characteristics of PV, the proposed constant power tracking algorithm maintains constant power by operating the distributed ESS of the PV-ESS integrated module in accordance with the output state of the PV. By performing PSIM simulation and an experiment, this study verifies the performance of the integrated module of PV-ESS for DC micro grids applying the constant power tracking algorithm.

A Study on the Comparison of the PV Module Generation from Daylight Irradiation and Indoor Lighting Savings with Lighting Simulation (일사량 분석을 통한 PV모듈 발전량과 시뮬레이션을 이용한 실내 조명에너지 절감량 비교)

  • Park, Yoon-Min;Hong, Seong-Kwan;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.17-24
    • /
    • 2010
  • Recently, BIPV system which is good enough for maintenance and functions with the shading system is being used. However BIPV system with the shading system is different from existing PV module because of using flexible PV module. Prior to the application of the BIPV system, the clearness index was calculated by Erbs et al.(1982) and analyzed for the amount of electric power generation of sky irradiance with measured data. To predict electric lighting energy savings in daylit space, electric lighting power savings with amount of PV module electric power generation was compared by using Relux 2010 software in this study.

The Experimental Performance of Rectangular Tube Absorber PV/Thermal Combined Collector Module (사각튜브부착형 흡열판을 적용한 Unglazed PVT 복합모듈의 열적 전기적 성능분석)

  • Jeong, Seon-Ok;Chun, Jin-Aha;Kim, Jin-Hee;Kim, Jun-Tae;Cho, In-Soo;Nam, Seung-Baeg
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.87-92
    • /
    • 2011
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT)module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat simultaneously. The performance of the PV/Thermal combined collector module is directly influenced by solar radiation that also has an effect on PV module temperature. It is also has believe that the energy performance of PV/T collector is related to absorber design as well as PV module temperature. The existing study has been paid to the PV/Thermal combined collector module with circle tube absorbers. The aim of this study is to analyze the experimental performance of the PV/Thermal combined collector rectangular tube absorbers according to solar radiation. The experimental result show that the average thermal and electrical efficiencies of the PVT collector were 43% and14.81% respectively. Solar radiation is one of the most influential factors to determine the energy performance of PVT collector, but from a certain level of solar radiation the PVT collector receives on, its efficiencies began to decrease.

  • PDF

Electrical Characteristics of PV Modules with Odd Strings by Arrangement on Bypass Diode (홀수스트링 PV모듈의 바이패스 다이오드 배치에 의한 전기적 특성)

  • Shin, Woo-Gyun;Go, Seok-Hwan;Ju, Young-Chul;Song, Hyung-Jun;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • Most PV modules are fabricated by 6 cell-strings with solar cells connected in series. Moreover, bypass diodes are generally installed every 2 cell-strings to prevent PV modules from a damage induced by current mismatch or partial shading. But, in the case of special purpose PV module, like as BIPV (Building Integrated Photovoltaic), the number of cell-strings per module varies according to its size. Differ from a module employing even cell-strings, the configuration of bypass diode should be optimized in the PV module with odd strings because of oppositely facing electrodes. Hence, in this study, electrical characteristics of special purposed PV module with odd string was empirically and theoretically studied depending on arrangement of bypass diode. Here, we assumed that PV module has 3 strings and the number of bypass diodes in the system varies from 2 to 6. In case of 2 bypass diodes, shading on a center string increases short circuit current of the module, because of a parallel circuit induced by 2 bypass diodes connected to center string. Also, the loss is larger, as the shading area in the center string is enlarged. Thus, maximum power of the PV module with 2 bypass diode decreases by up to 59 (%) when shading area varies from 50 to 90 (%). On the other hand, In case of 3 and 6 bypass diodes, the maximum power reduction was within about 3 (W), even the shading area changes from 50 to 90 (%). As a result, It is an alternative to arrange the bypass diode by each string or one bypass diode in the PV module in order to completely bypass current in case of shading, when PV module with odd string are fabricated.

Effects of Ambient Temperature on the Thermal Characteristics of Photovoltaic Modules (대기온도에 따른 태양전지 모듈의 열적 특성에 관한 연구)

  • Kim, Jong-Pil;Jeon, Chung-Hwan;Chang, Young-June
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.48-52
    • /
    • 2008
  • The photovoltaic modules are affected by heat. The hotter the PV module, the lower the power output, then the life time will be short. If the cell temperature rises above a certain limit the encapsulating materials can be damaged, and this will degrade the performance of the PV module. This paper presents that the PV module temperature can be estimated by using thermal analysis programs, and demonstrates the thermal characteristics of the PV module.

  • PDF

A Brief Review on Variables and Test Priorities of Photovoltaic Module Life Expectancy

  • Padi, Siva Parvathi;Chowdhury, Sanchari;Zahid, Muhammad Aleem;Kim, Jaeun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.36-44
    • /
    • 2021
  • To endorse the reliability and durability of the solar photovoltaic (PV) device several tests were conducted before exposing to the outdoor field in a non-ideal condition. The PV module has high probability that intend to perform adequately for 30 years under operating conditions. To evaluate the long term performance of the PV module in diversified terrestrial conditions, one should use the outdoor performance data. However, no one wants to wait for 25 years to determine the module reliability. The accelerating stress tests performing in the laboratory by mimicking different field conditions are thus important to understand the performance of a PV module. In this review, we will discuss briefly about different accelerating stress types, levels and prioritization that are used to evaluate the PV module reliability and durability before using them in real field.

Analysis of Maximum Generating Power Drop of PV Module Under the Continuous Artificial Light Irradiation Test Condition (연속 광조사 조건에서의 태양전지모듈의 연간 최대출력 저하율 변화 예측 분석)

  • Kim, Kyungsoo;Yun, Jaeho
    • Current Photovoltaic Research
    • /
    • v.6 no.3
    • /
    • pp.69-73
    • /
    • 2018
  • PV system is consisted with PV module, inverter and BOS(balance of system). To have robustic operation more than 20 years, the expected and guaranteed durability and reliability of products should be met. Almost components of PV system are qualified through IEC standards at test laboratory. But the qualification certificate of product does not ensure long-term nondefective operation. PV module's expected life time is nowadays more than 20 years and annual maximum power degradation ratio would be less than -1%. But the power degradation ratio is basically based on real data more than several years' record. Developing test method for ensuring annual maximum power degradation ratio is very need because there are many new products every month with new materials. In this paper, we have suggested new test method under continuous artificial light irradiation test condition for analyze expected maximum power drop ratio.

The Characteristic of the Performance of the Bypass Diode with Composition Change of the String in Si-PV Module (결정질 PV 모듈의 string 구성에 따른 바이패스 다이오드 동작 특성)

  • Ji, Yang-Geun;Kong, Ji-Hyun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2212-2217
    • /
    • 2010
  • Previous studies have been focused on the voltage of Bypass diode and Isc(Short Circuit Current) of the influenced solar cell. The Bypass diode starts working when it gets the reverse applied voltage. Previous studies have only concentrated on Isc of the influenced solar cell and Imp of PV module to explain the bypassing performance. PV module is usually working together with inverter having MPPT(Maximum Power Point Tracking) function for best performance. bypassing point is regulated by MPPT function of inverter. In this paper, simulation results of Bypass diode in PV module have been analyzed to represent the relationship of the bypassing point with the composition of PV module. From the results, the more cells are connected with each string, the earlier bypassing performance happens under the fixed number of strings. As diode groups increase or irradiation decreases, the bypassing performance starts fast.

A Study on Correlation between Improvement in Efficiency of PV and Green roof of Public Building (공공건물 옥상녹화와 설치태양광(PV)의 효율향상 상관관계 연구)

  • Lee, Eung Jik
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.111-118
    • /
    • 2013
  • This study aims to investigate advantages of complex installation of green roof and PV system in a public building, to analyze the impact of green roof on the efficiency of PV power generation, and to consider the correlation between green roof and PV power generation. When the temperature and power generation of the modules installed in the green roof and non-green roof of the public building were measured for 3 days, the average temperature of the green roof was 23.6 degrees, and it was 36.1 degrees in the non-green roof which increased by nearly 53%. Overall, the module temperature in the green roof was lower. On the other hand, in relation to the PV generation depending on temperature reduction during the same period, the mono-crystalline module and the poly-crystalline module in the green roof showed an increase in generation at nearly 222.2W and 341.6W, and the efficiency rose by 5.5% and 6.2%, respectively, compared to the modules in the non-green roof. Therefore, it is analyzed that green roof has a positive influence on PV power generation. Finally shows the efficiency of the installed on the Green Roof PV system (complex Installation) higher than on the concrete roof PV system. Thus, the complex PV systems as well as the usual benefits of green roofs will provide greater synergies.