• 제목/요약/키워드: pursuit algorithms

검색결과 33건 처리시간 0.028초

Progressive Compression of 3D Mesh Geometry Using Sparse Approximations from Redundant Frame Dictionaries

  • Krivokuca, Maja;Abdulla, Waleed Habib;Wunsche, Burkhard Claus
    • ETRI Journal
    • /
    • 제39권1호
    • /
    • pp.1-12
    • /
    • 2017
  • In this paper, we present a new approach for the progressive compression of three-dimensional (3D) mesh geometry using redundant frame dictionaries and sparse approximation techniques. We construct the proposed frames from redundant linear combinations of the eigenvectors of a combinatorial mesh Laplacian matrix. We achieve a sparse synthesis of the mesh geometry by selecting atoms from a frame using matching pursuit. Experimental results show that the resulting rate-distortion performance compares favorably with other progressive mesh compression algorithms in the same category, even when a very simple, sub-optimal encoding strategy is used for the transmitted data. The proposed frames also have the desirable property of being able to be applied directly to a manifold mesh having arbitrary topology and connectivity types; thus, no initial remeshing is required and the original mesh connectivity is preserved.

Performance Analysis of Compressed Sensing Given Insufficient Random Measurements

  • Rateb, Ahmad M.;Syed-Yusof, Sharifah Kamilah
    • ETRI Journal
    • /
    • 제35권2호
    • /
    • pp.200-206
    • /
    • 2013
  • Most of the literature on compressed sensing has not paid enough attention to scenarios in which the number of acquired measurements is insufficient to satisfy minimal exact reconstruction requirements. In practice, encountering such scenarios is highly likely, either intentionally or unintentionally, that is, due to high sensing cost or to the lack of knowledge of signal properties. We analyze signal reconstruction performance in this setting. The main result is an expression of the reconstruction error as a function of the number of acquired measurements.

Sparse Signal Recovery with Pruning-based Tree search

  • Kim, Jinhong;Shim, Byonghyo
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 추계학술대회
    • /
    • pp.51-53
    • /
    • 2015
  • In this paper, we propose an efficient sparse signal recovery algorithm referred to as the matching pursuit with a tree pruning (TMP). Two key ingredients of TMP are the pre-selection to put a restriction on columns of the sensing matrix to be investigated and the tree pruning to eliminate unpromising paths from the search tree. In our analysis, we show that the sparse signal is accurately reconstructed when the sensing matrix satisfies the restricted isometry property. In our simulations, we confirm that TMP is effective in recovering sparse signals and outperforms conventional sparse recovery algorithms.

  • PDF

트리제거 기법을 이용한 희소신호 복원 (Sparse Signal Recovery via a Pruning-based Tree Search)

  • 김상태;심병효
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 추계학술대회
    • /
    • pp.1-3
    • /
    • 2015
  • In this paper, we propose a sparse signal reconstruction method referred to as the matching pursuit with a pruning-based tree search (PTS-MP). Two key ingredients of PTS-MP are the pre-selection to put a restriction on columns of the sensing matrix to be investigated and the tree pruning to eliminate unpromising paths from the search tree. In our simulations, we confirm that PTS-MP is effective in recovering sparse signals and outperforms conventional sparse recovery algorithms.

  • PDF

Sparse Index Multiple Access for Multi-Carrier Systems with Precoding

  • Choi, Jinho
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.439-445
    • /
    • 2016
  • In this paper, we consider subcarrier-index modulation (SIM) for precoded orthogonal frequency division multiplexing (OFDM) with a few activated subcarriers per user and its generalization to multi-carrier multiple access systems. The resulting multiple access is called sparse index multiple access (SIMA). SIMA can be considered as a combination of multi-carrier code division multiple access (MC-CDMA) and SIM. Thus, SIMA is able to exploit a path diversity gain by (random) spreading over multiple carriers as MC-CDMA. To detect multiple users' signals, a low-complexity detection method is proposed by exploiting the notion of compressive sensing (CS). The derived low-complexity detection method is based on the orthogonal matching pursuit (OMP) algorithm, which is one of greedy algorithms used to estimate sparse signals in CS. From simulation results, we can observe that SIMA can perform better than MC-CDMA when the ratio of the number of users to the number of multi-carrier is low.

Oblique Iterative Hard Thresholding 알고리즘을 이용한 압축 센싱의 보장된 Sparse 복원 (Guaranteed Sparse Recovery Using Oblique Iterative Hard Thresholding Algorithm in Compressive Sensing)

  • 응웬뚜랑녹;정홍규;신요안
    • 한국통신학회논문지
    • /
    • 제39A권12호
    • /
    • pp.739-745
    • /
    • 2014
  • 압축 센싱에서 측정 행렬 A의 3s-Restricted Isometry Constant가 1/2 혹은 $1/\sqrt{3}$보다 작다면 모든 s-Sparse 벡터 $x{\in}R^N$는 측정 벡터 y=Ax 또는 잡음이 섞인 벡터 y=Ax+e로부터 Iterative Hard Thresholding (IHT) 알고리즘에 의해 복원될 수 있다. 하지만, 이러한 복원은 신호 획득 기법의 특정한 가정 하에서 실질적인 알고리즘들에 의해 보장된다. 복원을 위한 핵심적인 가정 중에 하나는 측정 행렬이 Restricted Isometry Property (RIP)를 만족해야만 하는 것인데, 이 조건은 압축 센싱의 실제 응용 환경에서 종종 만족되지 않는다. 본 논문에서는 이방성 (Anisotropic) 경우에서 Restricted Biorthogonality Property (RBOP)로 불리는 RIP의 일반화와 Oblique Pursuit으로 불리는 새로운 복구 알고리즘들을 분석한다. 또한, IHT 알고리즘들을 위해 Restricted Biorthogonality Constant의 관점에서 성공적인 Sparse 신호 복원에 대한 분석을 제시한다.

세계 AI 로봇 카레이스 대회를 위한 자율 주행 시스템 구현 (Implementation of an Autonomous Driving System for the Segye AI Robot Car Race Competition)

  • 최정현;임예은;박종훈;정현수;변승재;사공의훈;박정현;김창현;이재찬;김도형;황면중
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.198-208
    • /
    • 2022
  • In this paper, an autonomous driving system is implemented for the Segye AI Robot Race Competition that multiple vehicles drive simultaneously. By utilizing the ERP42-racing platform, RTK-GPS, and LiDAR sensors provided in the competition, we propose an autonomous driving system that can drive safely and quickly in a road environment with multiple vehicles. This system consists of a recognition, judgement, and control parts. In the recognition stage, vehicle localization and obstacle detection through waypoint-based LiDAR ROI were performed. In the judgement stage, target velocity setting and obstacle avoidance judgement are determined in consideration of the straight/curved section and the distance between the vehicle and the neighboring vehicle. In the control stage, adaptive cruise longitudinal velocity control based on safe distance and lateral velocity control based on pure-pursuit are performed. To overcome the limited experimental environment, simulation and partial actual experiments were conducted together to develop and verify the proposed algorithms. After that, we participated in the Segye AI Robot Race Competition and performed autonomous driving racing with verified algorithms.

심층 강화학습을 이용한 시변 비례 항법 유도 기법 (Time-varying Proportional Navigation Guidance using Deep Reinforcement Learning)

  • 채혁주;이단일;박수정;최한림;박한솔;안경수
    • 한국군사과학기술학회지
    • /
    • 제23권4호
    • /
    • pp.399-406
    • /
    • 2020
  • In this paper, we propose a time-varying proportional navigation guidance law that determines the proportional navigation gain in real-time according to the operating situation. When intercepting a target, an unidentified evasion strategy causes a loss of optimality. To compensate for this problem, proper proportional navigation gain is derived at every time step by solving an optimal control problem with the inferred evader's strategy. Recently, deep reinforcement learning algorithms are introduced to deal with complex optimal control problem efficiently. We adapt the actor-critic method to build a proportional navigation gain network and the network is trained by the Proximal Policy Optimization(PPO) algorithm to learn an evasion strategy of the target. Numerical experiments show the effectiveness and optimality of the proposed method.

FAULT DIAGNOSIS OF ROLLING BEARINGS USING UNSUPERVISED DYNAMIC TIME WARPING-AIDED ARTIFICIAL IMMUNE SYSTEM

  • LUCAS VERONEZ GOULART FERREIRA;LAXMI RATHOUR;DEVIKA DABKE;FABIO ROBERTO CHAVARETTE;VISHNU NARAYAN MISHRA
    • Journal of applied mathematics & informatics
    • /
    • 제41권6호
    • /
    • pp.1257-1274
    • /
    • 2023
  • Rotating machines heavily rely on an intricate network of interconnected sub-components, with bearing failures accounting for a substantial proportion (40% to 90%) of all such failures. To address this issue, intelligent algorithms have been developed to evaluate vibrational signals and accurately detect faults, thereby reducing the reliance on expert knowledge and lowering maintenance costs. Within the field of machine learning, Artificial Immune Systems (AIS) have exhibited notable potential, with applications ranging from malware detection in computer systems to fault detection in bearings, which is the primary focus of this study. In pursuit of this objective, we propose a novel procedure for detecting novel instances of anomalies in varying operating conditions, utilizing only the signals derived from the healthy state of the analyzed machine. Our approach incorporates AIS augmented by Dynamic Time Warping (DTW). The experimental outcomes demonstrate that the AIS-DTW method yields a considerable improvement in anomaly detection rates (up to 53.83%) compared to the conventional AIS. In summary, our findings indicate that our method represents a significant advancement in enhancing the resilience of AIS-based novelty detection, thereby bolstering the reliability of rotating machines and reducing the need for expertise in bearing fault detection.

Sparsity Adaptive Expectation Maximization Algorithm for Estimating Channels in MIMO Cooperation systems

  • Zhang, Aihua;Yang, Shouyi;Li, Jianjun;Li, Chunlei;Liu, Zhoufeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권8호
    • /
    • pp.3498-3511
    • /
    • 2016
  • We investigate the channel state information (CSI) in multi-input multi-output (MIMO) cooperative networks that employ the amplify-and-forward transmission scheme. Least squares and expectation conditional maximization have been proposed in the system. However, neither of these two approaches takes advantage of channel sparsity, and they cause estimation performance loss. Unlike linear channel estimation methods, several compressed channel estimation methods are proposed in this study to exploit the sparsity of the MIMO cooperative channels based on the theory of compressed sensing. First, the channel estimation problem is formulated as a compressed sensing problem by using sparse decomposition theory. Second, the lower bound is derived for the estimation, and the MIMO relay channel is reconstructed via compressive sampling matching pursuit algorithms. Finally, based on this model, we propose a novel algorithm so called sparsity adaptive expectation maximization (SAEM) by using Kalman filter and expectation maximization algorithm so that it can exploit channel sparsity alternatively and also track the true support set of time-varying channel. Kalman filter is used to provide soft information of transmitted signals to the EM-based algorithm. Various numerical simulation results indicate that the proposed sparse channel estimation technique outperforms the previous estimation schemes.