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요   약 
 

In this paper, we propose an efficient sparse signal recovery algorithm referred to as the matching 

pursuit with a tree pruning (TMP). Two key ingredients of TMP are the pre-selection to put a restriction 

on columns of the sensing matrix to be investigated and the tree pruning to eliminate unpromising paths 

from the search tree. In our analysis, we show that the sparse signal is accurately reconstructed when the 

sensing matrix satisfies the restricted isometry property. In our simulations, we confirm that TMP is 

effective in recovering sparse signals and outperforms conventional sparse recovery algorithms. 

 

1. Introduction 
In recent years, compressive sensing (CS) has 

received much attention as a means to recover sparse 

signals in underdetermined system [1]-[4]. In CS 

paradigm, the key finding is that as long as the signal to be 

recovered is sparse, one can recover the signal with far 

less number of measurements than traditional approaches.  

Well known problem to recover the sparse signal x 

using the measurement y=Φ x is formulated as the l_0-

norm minimization problem. Since solving this problem is 

known to be NP-hard, greedy algorithm has received much 

attention for cost-effective implementation for sparse 

signal recovery (e.g., orthogonal matching pursuit, OMP). 

However, although the greedy approaches are 

computationally efficient, their performance in general is 

not satisfactory, especially for large sparsity. 

The goal of this paper is to introduce an efficient 

sparse recovery algorithm based on the tree search with 

pruning, referred to as the matching pursuit with a tree 

pruning (TMP). Two key features of TMP are the ‘ pre-

selection’  to put a restriction on columns of the sensing 

matrix to be investigated and the ‘ pruning-based tree 

search’  to remove the unpromising paths from the search 

tree. In our analysis, we show that TMP can accurately 

reconstruct the sparse signal under more relaxed condition 

than that of existing approaches. From the simulations, we 

show that our approach significantly reduces the 

computational burden of exhaustive tree search yet 

achieves excellent reconstruction performance 

 

 

2. Matching Pursuit with a Tree Pruning 
As mentioned, our proposed algorithm consists 

of two steps: pre-selection and pruning-based 

tree search. 

The purpose of the pre-selection is to 

estimate column indices which are highly likely to 

be the support  (index set of nonzero entries). 

Denoting the set of indices as , then the search 

set is reduced from  to , a subset 

of . When we perform the tree search, we only 

use elements of the pre-selected set  as a new 

element in the branches so that we can limit the 

number of paths in the tree and lessen the search 

complexity. In the pre-selection, one can basically 

use any sparse recovery algorithm to build , such 

as the OMP algorithm running more than -

iterations [3] or the generalized OMP algorithm [4]. 

When  is constructed, TMP performs tree 

search for sparse signal reconstruction. The tree 

has a maximum depth , and the goal is to find a 

path with depth K (candidate with cardinality ) 

that has the smallest cost function . 

In each layer, new child path is generated by 

adding new element to the existing path. If we 

denote the path at layer (iteration)  as , then  

is the causal set chosen in first  iterations.. Since 

visiting all possible paths is prohibitive, we 

introduce a pruning strategy to remove 

unpromising paths from the tree. This pruning 

decision is done by comparing the cost function of 

the path and the and the pruning threshold 

(smallest cost function among all paths 

investigated).  

To make a proper decision, therefore, we have 

no way but to consider the cost function of full-

blown path 
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Figure 1 Pruning operation of TMP 

and hence need a noncausal set  in the pruning 

process. This noncausal set  is temporarily 

needed for the pruning operation and can be easily 

obtained by choosing  indices of columns in 

 whose magnitude of the correlation with the 

residual  is maximal, where 

               (1) 

and 

.                 (2) 

For example, if ,  and 

, 

then the noncausal set is . 

Once the noncausal set is obtained, it is combined 

with the causal set as  and then its 

residual  ( ) is computed. 

Using the -norm of the residual , TMP decides 

whether to prune the path  or not. To be specific, if 

the magnitude of  is greater than the pruning 

threshold , then  is regarded to be hopeless and 

hence is removed from the tree. After the path 

examination in -th layer is finished, the pruning 

threshold is updated to the minimum -norm of the 

residual among all surviving paths. 

 

3. Recovery Condition of TMP 
In this section, we derive the exact recovery 

condition ensuring that TMP accurately recovers the 

K-sparse signals. In our analysis, we use the 

restricted isometry property (RIP) of the sensing 

matrix. 

As mentioned, TMP consists of pre-selection and 

tree search. In our analysis, we show that the 

recovery condition of TMP is not much different from 

the condition of the pre-selection only and in fact 

guaranteed under more relaxed RIP bound. 

In order to ensure the accurate identification of the 

support, TMP should satisfy the following two 

conditions: 

1) At least one support index should be selected in 

the pre-selection process. 

2) At least one true path5 should be survived in the 

tree pruning process. 

The following Theorem describes the condition 

ensuring that at least one support is identified by the 

pre-selection stage. 

Theorem 1 (Recovery condition of gOMP in first 

iteration [4]) At least one true index is chosen in the 

first iteration of gOMP under 

.                  (4) 

Next, we provide the condition under which the 

true path is not removed from the tree. 

Theorem 2 If , then  is also true (i.e., 

) under 

.                   (4) 

Proof: We skip the proof due to the page limitation. 

Since at least one true index is chosen and the 

noncausal set of true causal path is also true,  

for any true path . Furthermore, since , 

 for any positive . In this scenario, that is, 

when Theorem 1 and 2 are jointly satisfied, the 

support is accurately identified by TMP. 

Theorem 3 (Recovery condition of TMP) TMP 

recovers the sparse signals accurately under 

    if        (5) 

   otherwise      (6) 

where . 

Proof: The conditions (5) and (6) are obtained by 

choosing more strict condition between Theorem 1 

and 2. 

 

4. Empirical Results 
In this section, we provide the empirical 

performance of TMP with existing sparse signal 

recovery algorithms. The sensing matrix of size 

 where each entry is from independent 

Gaussian random variable is used for the simulation. 

In order to measure the performance, the exact 

recovery ratio (ERR) and the mean squared error 

(MSE) are used for the noiseless and the noisy 

settings, respectively. 

Fig. 2 shows the ERR performance of sparse signal 

recovery algorithms. Overall, we observe that the 

addition of tree search process provides substantial 

gain in performance. In particular, when  is large, 

performance gain caused by the tree search stage is 

noticeable. For example, the ERR of TMP at  is 

0.94 while that of OMP and CoSaMP are 0.23 and 

0.62, respectively. 
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Figure 2 ERR performance 
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Figure 3 MSE performance 

In Fig. 3, we plot the MSE performance of the 

sparse recovery algorithms as a function of signal-

to-noise ratio (SNR) in the noisy setting. In this test, 

we set the sparsity level to K = 20 so that 8% of 

entries of  are nonzero. Overall, we observe that the 

performance gain of TMP improves with SNR. While 

the performance gap between the conventional sparse 

recovery algorithms and the Oracle estimator is 

maintained across the board, the performance gap 

between TMP and the oracle estimator gets smaller 

as SNR increases. 

Fig. 4 shows the running time complexity of the 

sparse recovery algorithms as a function of the 

sparsity level . As seen in the figure, among greedy 

algorithms under test, OMP exhibits the smallest 

running time. Since TMP performs tree search to 

investigate multiple promising paths, it is no wonder 

that the running time complexity of TMP is higher 

than the rest of greedy algorithms. Neverthesess, by 

limiting the number of branching operations, 

computational burden of TMP can be saved 

dramatically. Due to the reduction in 
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Figure 4 Complexity 

number of investigated paths, we can observe that 

the running time complexity of TMP with limited 

branching is much smaller than that without limitation. 

 

5. Conclusion 
In this paper, we proposed an effective sparse 

signal recovery algorithm referred to as TMP. From 

the RIP-based analysis, we provided the sufficient 

condition under which the proposed approach selects 

the support. In addition, from the simulation, we could 

observe that the proposed TMP algorithm is effective 

in recovering sparse signals for both noiseless and 

noisy scenarios. In particular, we observed that TMP 

outperforms conventional sparse signal recovery 

algorithms and its performance is close to that of the 

Oracle estimator in high SNR regime. 
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