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ABSTRACT 
 

In this paper, we propose a sparse signal reconstruction method referred to as the matching pursuit with a 

pruning-based tree search (PTS-MP). Two key ingredients of PTS-MP are the pre-selection to put a 

restriction on columns of the sensing matrix to be investigated and the tree pruning to eliminate unpromising 

paths from the search tree. In our simulations, we confirm that PTS-MP is effective in recovering sparse 

signals and outperforms conventional sparse recovery algorithms. 

 

1. Introduction 

 

In recent years, compressive sensing (CS) has 

received much attention as a means to recover sparse 

signals in underdetermined system [1]-[4]. In CS 

paradigm, the key finding is that as long as the signal 

to be recovered is sparse, one can recover the signal 

with far less number of measurements than traditional 

approaches. The goal of this paper is to introduce an 

effective sparse recovery algorithm based on the tree 

search with pruning, referred to as the matching 

pursuit with a pruning-based tree pruning (PTS-

MP). Two key features of PTS-MP are a restriction 

on columns of the sensing matrix to be investigated 

(pre-selection) and the pruning strategy to remove 

the unpromising paths (pruning-based tree search). 

From the simulations, we show that our approach 

significantly reduces the computational burden of 

exhaustive tree search yet achieves excellent 

reconstruction performance. 

 

2. Matching Pursuit with a Pruning-based Tree Search 

 

The pre-selection is performed to ‘roughly’ 

select the column indices which are highly likely to be 

the support T (index set of nonzero entries). If the 

pre-selection is performed, then the search set is 

reduced from Ω = {1, 2, … , N}  to Θ , where Θ  is a 

small subset of Ω  and NΘ . In the pre-

selection, one can use any conventional algorithm to 

construct Θ , such as the OMP algorithm running 

more than K-iterations [3] or the generalized OMP 

algorithm [4].  

In the pruning-based tree search, we only use 

the elements in Θ as the branches so that we can 

restrict the number of paths and thus lessen the 

search complexity. When Θ is constructed, PTS-MP 

performs tree search for sparse signal reconstruction. 

The tree has K layers, and the goal is to find a path 

with cardinality K that minimizes the cost function 

J(Λ) = ‖𝑦 −Φ
Λ
𝑥Λ‖

2
 ( KΛ ). In each layer, new 

branch is added using the new element to the existing 

path. If we denote the path at layer (iteration) i as 𝑠̂1
𝑖 , 

then 𝑠̂1
𝑖  is the causal set chosen in first i iterations.. 

Since visiting all possible paths is exhaustive, we 

introduce a pruning strategy to remove unpromising 

paths from the tree. This pruning decision is 

performed by comparing the cost function of the path 

and the pruning threshold (smallest cost function 

among all paths investigated).  

To make a proper decision, therefore, we have no 

way but to consider the cost function of full-blown 

path  

and hence need a noncausal set 𝑠̃𝑖+1
𝐾  in the pruning 

process. This noncausal set 𝑠̃𝑖+1
𝐾  is temporarily 

needed for the pruning operation and can be easily 

obtained by choosing K − i  indices of columns in 

Ω\𝑠̂1
𝑖  whose magnitude of the correlation with the 

residual 𝑟𝑠̂1𝑖  is maximal, where 

𝑟𝑠̂1𝑖 = y −Φ
𝑠̂1
𝑖𝑥𝑠̂1

𝑖 .              (1) 

And 
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𝑥𝑠̂1
𝑖 = Φ

𝑠̂1
𝑖

+
y.                 (2) 

For example, if K − i = 2, Ω\𝑠̂1
𝑖 = {2,5,6, 10, 11, … } and 

|𝜙5

′
𝑟𝑠̂1𝑖 | > |𝜙2

′
𝑟𝑠̂1𝑖 | > |𝜙11

′
𝑟𝑠̂1

𝑖 | > |𝜙10

′
𝑟𝑠̂1𝑖 | > |𝜙6

′
𝑟𝑠̂1𝑖 | > ⋯, 

then the noncausal set is 𝑠̃𝑖+1
𝐾 = {2,5}.  

 Once the noncausal set is obtained, it is 

combined with the causal set as 𝑠̃1
𝐾 = 𝑠̂1

𝑖 ∪ 𝑠̃𝑖+1
𝐾  and 

then its residual 𝑟𝑠̃1
𝐾 = y −Φ

𝑠̃1
𝐾𝑥𝑠̃1

𝐾  ( 𝑥𝑠̃1
𝐾 = Φ

𝑠̃1
𝐾

+
𝑦 ) is 

computed. Using the 𝑙2 -norm of the residual 𝑟𝑠̃1
𝐾 , 

PTS-MP decides whether to prune the path 𝑠̂1
𝑖  or not. 

To be specific, if the magnitude  

 

Figure 1 Pruning operation of PTS-MP 

of 𝑟𝑠̃1𝐾 is greater than the pruning threshold ε, then 

𝑠̂1
𝑖  is regarded to be hopeless and hence is removed 

from the tree. After the path examination in i-th 

layer is finished, the pruning threshold is updated to 

the minimum 𝑙2 -norm of the residual among all 

surviving paths. 

 

3. Empirical Results and Discussions 

 

In this section, we provide the empirical 

performance of PTS-MP with existing sparse signal 

recovery algorithms. The sensing matrix of size 

100 × 256  where each entry is from independent 

Gaussian random variable is used for the simulation. 

In order to measure the performance, the exact 

recovery ratio (ERR) and the mean squared error 

(MSE) are used for the noiseless and the noisy 

settings, respectively. 

Fig. 2 shows the ERR performance of sparse 

signal recovery algorithms. Overall, we observe that 

the addition of tree search process provides 

substantial gain in performance. In particular, when K 

is large, performance gain caused by the tree search 

stage is noticeable. For example, the ERR of PTS-

MP at K = 35 is 0.94 while that of OMP and CoSaMP 

are 0.24 and 0.1, respectively. 

 In Fig. 3, we plot the MSE performance of the 

sparse recovery algorithms as a function of signal-

to-noise ratio (SNR) in the noisy setting. In this test, 

we set the sparsity level to K = 30 so that 8% of 

entries of x are nonzero. Overall, we observe that the 

performance gain of PTS-MP improves with SNR.  

 In summary, we proposed an effective sparse 

signal recovery algorithm referred to as matching 

pursuit with a pruning-based tree search (PTS-MP). 

In order to overcome the shortcoming of greedy 

algorithm, PTS-MP performs the tree search and 

investigates multiple promising candidates. In our 

empirical simulation, we observed that PTS-MP 

provides excellent recovery performance in both 

noiseless and noisy scenarios. 

Figure 2 ERR performance 

Figure 3 MSE performance 
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