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ABSTRACT. Rotating machines heavily rely on an intricate network of in-
terconnected sub-components, with bearing failures accounting for a sub-
stantial proportion (40% to 90%) of all such failures. To address this issue,
intelligent algorithms have been developed to evaluate vibrational signals
and accurately detect faults, thereby reducing the reliance on expert knowl-
edge and lowering maintenance costs. Within the field of machine learning,
Artificial Immune Systems (AIS) have exhibited notable potential, with
applications ranging from malware detection in computer systems to fault
detection in bearings, which is the primary focus of this study. In pursuit of
this objective, we propose a novel procedure for detecting novel instances of
anomalies in varying operating conditions, utilizing only the signals derived
from the healthy state of the analyzed machine. Our approach incorporates
AIS augmented by Dynamic Time Warping (DTW). The experimental out-
comes demonstrate that the AIS-DTW method yields a considerable im-
provement in anomaly detection rates (up to 53.83%) compared to the
conventional AIS. In summary, our findings indicate that our method rep-
resents a significant advancement in enhancing the resilience of AIS-based
novelty detection, thereby bolstering the reliability of rotating machines
and reducing the need for expertise in bearing fault detection.

AMS Mathematics Subject Classification : 68W40, 42C40.
Key words and phrases : Novelty detection, AIS, DTW, bearing fault,
vibrations.

1. Introduction

The indispensability of rotating machines in today’s industry is widely ac-
knowledged. These machines comprise a complex network of interconnected and
interdependent components, with bearings playing a pivotal role [14]. Notably,
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bearings have been implicated in 40% of failures observed in large machines,
a figure that escalates to 90% when examining smaller machines [13, 21]. In
essence, the malfunction of a bearing leads to a complete disruption of the ma-
chine’s functionality, a scenario that frequently occurs. Consequently, extensive
research efforts have been dedicated to the development of intelligent algorithms
capable of robustly processing and detecting faults, with a particular empha-
sis on urgent situations such as real-time detection. These algorithms leverage
vibrational signal analysis as a means of fault diagnosis [13, 19].

Traditionally, the detection of faults has been done through the use of costly
experience and invaluable engineering expertise, by which, for an ever-growing
automation in manufacturing processes, the need for intelligent and automatic
systems of detection has become vital [15]. However, with the advent of smart
and low-cost data acquisition systems, a huge volume of data (signals) has over-
whelmed detection systems and created a whole new problem: the excess of use-
less information, which leads to two of the logical constraints for an intelligent
system, which are to be able to filter unnecessary data and extract meaningful
features [15].

As an addition to the aforementioned constraints, the detection system must
also cope with varying working conditions [17]. That is, the operational pa-
rameters (e.g.: load and rotational speed) customarily change over time, as
modifications to the production are requested. This, in turn, modifies the per-
ception of available data, and the system should be able to promptly adapt [22].
Finally, one more constraint is that the data from the damaged state may sim-
ply not be available for training a model of detection. That can be a matter of
cost, meaning that testing with an expensive machine might not be an optimal
solution, or a matter of complexity or feasibility, when the damages pursued are
not easily modeled or the model is not known [8]. In that case, the goal is to
create a one-class classifier (healthy or nominal state), usually named as novelty
detection, which is a topic that has lately attracted more research [8, 25].

Novelty detection (ND) is based on the idea that if an observation is found
to be outside a limited subspace of reference (healthy state) within the feature
space, then it is said that a novelty has occurred [10]. One of the main problems
of ND is finding a proper threshold that distinguishes the novelty from the
normal state [8]. To accomplish this, researchers usually apply the Euclidean
or Mahalanobis distances as metrics for comparison [23] and, for example, [3]
used the latter to set a novelty index for the detection of faults in wind turbine
bearings.

However, it has been argued that the detection of faults in bearings could
present particular challenges. The frequencies generated by the vibration of
bearing spheres rolling over defects distribute their energy across a wide spec-
trum, which would remain hidden in traditional statistical analysis due to noise
and low-frequency phenomena [24]. To cope with this and the constraints stated
before, fault diagnosis of bearings became a hotspot of research in the artificial
intelligence (AI) community [2, 11, 12].
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One of the AI techniques that has increasingly attracted the attention of
researchers is Artificial Immune Systems (AIS) [2]. An extensive review of AIS-
based algorithms for fault diagnosis can be found in [2]. The basic concept of AIS
is inspired by the action of T cells, a part of the human immune system, which
possess surface receptors capable of detecting foreign particles after a censoring
phase that prevents the immune system from reacting with the host body [9].
Initially, AIS was proposed to protect computers from foreign attacks such as
viruses and malware [7]. Later, Dasgupta et al. [7] extended the basic algorithm
from [9] to process time-series arrays. These ideas have led to the development of
various algorithms, including fault diagnosis systems, which can be categorized
into three groups: immune network-based, one-signal approach, and two-signal-
based [2]. The present work focuses on the two-signal-based approach. In an AIS
two-signal-based fault detection system, the first signal provides information to
warn of a possible fault, and the second signal confirms it, thus reducing false
positive alarms [2]. To enhance the detection accuracy, many authors have
proposed modifications to AIS algorithm implementations. For instance, in [16],
vibration signals undergo a wavelet transformation prior to the negative selection
procedure and fault diagnosis. In [14], a method is proposed to optimize the
number of antibodies (detectors) in the AIS system, using a multi-objective
approach that maximizes the region covered by the antibodies in the feature
space and minimizes their density by evenly distributing them. Furthermore, [1]
suggests both an optimization of the detector set and a feature space-based AIS.

Finally, considering the aforementioned problems and constraints, and taking
into account recent developments in the AIS community, we propose a new
modification of AIS. Our approach is characterized as data-driven, requiring
minimal expert knowledge, flexible enough to handle varying working conditions,
and guided by the healthy state information only. Additionally, we present
results indicating the optimization potential of our approach. Specifically, in
this study, we utilize one of the procedures of Dynamic Time Warping (DTW)
to assist in calculating the affinity rate, which is subsequently used for ND. The
DTW algorithm compares two time-series inputs by calculating the point-by-
point Euclidean distance and determining the comparison path that minimizes
the overall distance between the series. A concise explanation of this method
is provided in the following section. By applying this approach, we compare
signals from a publicly available rolling bearing benchmark dataset [6] at different
rotational speeds, extract the affinity rate between these signals, and implement
a simple threshold scheme for ND. Additionally, in this work, we implement
both the new AIS-DTW approach and the original AIS approach to compare
the overall performance improvement of our method. Furthermore, we describe
the preprocessing procedure, which utilizes Z-score normalization to mitigate
bias caused by signal amplitude and mean. Unlike previous studies, we do not
extract features from the signals; instead, the affinity rate provided by AIS serves
as the feature itself for classification. In summary, this work introduces and tests
a novel approach named AIS-DTW.



1260 L.V.G. Ferreira, L. Rathour, D. Dabke, F.R. Chavarette, and V.N. Mishra

2. Methodology

2.1. Artificial Immune System. To address the issue of recognizing self
and non-self information strings in computers, Forrest et al. [9] introduced a
method known as Artificial Immune System (AIS). This algorithm takes inspi-
ration from the biological immune process that takes place in the thymus, which
detects system changes. Initially, the AIS was developed to address computer
security concerns, as mentioned in Forrest’s article. However, its applications
have expanded, and its use in fault detection in machines has been reported
[18, 19].

The basic algorithm of AIS involves two main phases. Firstly, a set of self-
strings (S) is defined, which contains the information to be protected. This set
serves as the basis for generating another set called detectors (D) during the
censoring phase. In the second phase, known as monitoring, the set of detectors
(D) is compared with new data to calculate an affinity rate [9]. Using expert
knowledge, a threshold for the affinity rate is established, which is then used
to classify each vector of the new data as either self or non-self. To handle
real-valued time series, Dasgupta and Forrest [7] proposed a different matching
criterion called the partial matching rule. In this study, we investigate the role
of the affinity rate in the AIS algorithm, and its calculation can be performed
according to [4, 16], as follows:

taf = An/A (1)

here A, is the number of matches obtained through the comparison of a vector

and one of the detectors in (D), and A; is the total length of each vector. This

comparison is made with regards to a matching criterion which, as given in Outa
et al. [18], can be written as:

di —dev < S < d; 1 + dev (2)

where d; j; is the value of the ith detector vector at the kth position, Sy is the

value at the kth position of the analyzed vector, and dev is a tolerance which

is calculated or given by prior knowledge. In other words, if the value of the

analyzed vector in a certain position falls in the interval given by Eq. 2, that
position is said to have matched and will add a unity in A,, in Eq. 1.

3. Dynamic Time Warping

The AIS algorithm, as seen in Eq. 2, is directly applied to vectors using
the same indexes on both for the matching criterion to calculate the affinity
rate. However, variations (e.g., amplitude, phase, and mean) of the signal due
to rotational speed might influence the comparison between a given signal and
a detector, which could result in a biased amount of false positives or negatives.
To tackle this problem, the Dynamic Time Warping Algorithm is proposed to
make a more proper path of comparison between signals applied at the AIS. A
graphical representation of DTW applied to two series extracted from sinusoids
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at different frequencies is shown in Fig. 1. In this figure, the difference between
the regular Euclidean path (Fig. 1(a)) and the one calculated by the DTW
(Fig. 1(b)) algorithm becomes clear if the reader focuses their attention on the
maxima of both curves.

1.0 A

0.5 4

0.0 4

—0.5 L\n\

—1.0 4

1.0 4

" 'r///'%/

000 025 050 075 100 125 150 175 2.00

—0.54

—=1.0 1

FIGURE 1. A graphical representation of the path of compari-
son using Euclidean distance (a) and the one calculated by the
DTW algorithm (b).

This algorithm takes two time series inputs, X = x; for ¢ = 1,..., N and
Y =y; for j =1,..., M, where M and N are the lengths of the series X and
Y, respectively. Then, a matrix D, usually named as the DTW distance matrix,
has its elements d(z;,y;) calculated by [20]:

d(@i,yi) = V(2i — y3)? (3)

The matrix D is then analysed through dynamic programming in order to
find the warping path that minimizes the cumulative distance (i, ) between
the two compared signals, using the following expression (with a starting point

at v(1,1)):

V(ivj) = d(ﬂ%yi) + mm{v(z -1,5- 1)77(1' - 1’.7')’7(@.7.7. - 1)} (4)

When the iteration process controlled by Eq. 4 ends, the warping path used

to obtain the minimum cumulative distance is then applied to the AIS algo-

rithm. Other authors usually use the DTW cumulative distance as a feature for

comparison [20]. However, in this work, we propose using a different calcula-

tion of the affinity rate, which would only require the path and not the distance
returned by the DTW algorithm.

4. Z-score Normalization

The AIS algorithm applied to raw vibration data is logically directly sensitive
to the mean and variance of the signals, as observed in Eq. 2. In other words,
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depending on the difference of the mean between the antigen and the antibody,
the calculated affinity rate can become heavily biased. To avoid this effect, we
have chosen to apply the Z-score normalization by using the following equation:

Zp = — (5)

where z and o are the mean and the standard deviation of the vibration signal
being normalized. Doing so provided a fair comparison between signals for the
application of the AIS algorithm, unbiased from variations of rotational speed
and amplitude due to faults on the bearings.
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FIGURE 2. Proposed framework for the novelty detection of
faults in bearings separated in two phases.

5. Proposed Framework

Figure 2 above depicts the framework used to extract the AIS-DTW features
of the signals, and it is explained as follows. Firstly, vibration signals at a
singular rotational speed from the healthy state of a machine are collected and
normalized using the Z-score procedure (these will compose the detectors matrix
of the AIS algorithm). A threshold for the affinity rate is chosen, which is 70%
in the present work, as proposed in [16]. Then, through an iterative process, the
basic AIS algorithm is applied to the detectors themselves to extract a deviation
value that provides the chosen minimum affinity rate between all signals within
the detectors’ matrix. This process guarantees that the AIS can detect its own
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(healthy) signals with enough confidence (minimum affinity rate). This entire
explanation summarizes the initialization of the system.

After initializing the system, the monitoring phase begins. Vibrational sig-
nals are acquired from an indeterminate state of the machine and subsequently
compared to each signal in the matrix of detectors. Each comparison yields an
affinity rate value, associating each analyzed signal with an array of affinity rates
equivalent in size to the number of signals in the detectors’ matrix.

6. Experimental Procedure

As a means to provide a solid foundation for comparison with other works, we
have chosen to apply the present methodology to ”The Politecnico di Torino”
rolling bearings test rig [5]. This publicly and freely accessible experiment con-
sists of a large amount of vibrational signals and is divided into two distinct
investigations: 1. Different working conditions (rotational velocity and radial
load) and damage severities, and 2. Endurance test with a single faulty bear-
ing. This work focuses on the former investigation since it clearly distinguishes
between healthy and faulty states of the machine.

The testing rig comprises three high-speed aeronautical rolling bearings, with
two supporting the shaft and a larger one (B2) in the middle specifically support-
ing the applied load (when present). Two triaxial accelerometers were installed.
For simplicity, we chose to apply the present methodology to the signals obtained
from channel 2 (radial direction), which is closest to the damaged bearing, with
no load applied to bearing B2. Furthermore, two types of damage were induced
using a Rockwell tool, differentiated by the location on the bearing: 1. Inner ring
and 2. Roller. The working conditions and damage severities analyzed in this
work are summarized in Table 1. To investigate the use of a signal taken from
a healthy condition and different working conditions than the ones analyzed,
the detectors’ matrix consists only of healthy signals from the 100 Hz rotational
speed.

7. Results

7.1. Artificial Immune System. The AIS algorithm has been utilized in
various studies to detect faults in machines by analyzing vibration signals, as
mentioned earlier. To enable a comparison with the proposed method, the initial
set of results is presented in Fig. 3. These results aim to showcase the potential
performance of the Artificial Immune System when applied to POLITO’s Dataset
without utilizing DTW (the original proposition of the AIS). Each plot in this
figure corresponds to a rotational speed, and each point represents the average
affinity rate calculated from the array of affinity rates obtained for each analyzed
signal, compared with all signals in the detectors’ matrix of the AIS algorithm. It
is important to note that not all values of the array of affinity rates are displayed
due to its high dimensionality (n = 100, which represents the number of signals
in the detectors’ matrix). However, the mean value has proven to be a precise
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representation of the array of affinity rates. Finally, the x-axis represents the
labeled state corresponding to each of the healthy and damaged states outlined
in Table 1.

TABLE 1. Labels of each damaged situation, their extension
and rotational speed.

Condition Label | Severity [um] | Rotational Speed [Hz]
Healthy 0 No Damage | 100 | 200 | 300 | 400 | 500

Damage Inner Ring 1 150
2 250 200 | 300 | 400 | 500

3 450

Damaged Roller 4 150
5 250 200 | 300 | 400 | 500

6 450

Fig. 3(a) - (d) represent the rotational speed from 200 to 500 Hz, respectively.
It can be seen that the mean affinity rate, interpreted as a feature of the signal,
becomes more sensitive to the damage as the rotational speed increases. This
sensitivity does not show a correlation between the size of the damage and the
value of the mean affinity rate. However, even in Fig. 3(a), corresponding to
200 Hz, a clear distinction between the healthy state and label 6 (roller with a
450 pm damage) is observed. Another observation is that the lowest degrees of
damage (inner ring and roller with 150 um damage, labels 1 and 4, respectively)
showed a complete separation from the healthy state at 400 and 500 Hz velocities,
which seems especially relevant considering that the operation of the machine
could become more critical at higher velocities.

To numerically evaluate this progression, a simple fault detection method
was implemented: if the mean affinity rate of a given signal falls between the
maximum and minimum values of the mean affinity rate of the healthy state,
the signal is classified as healthy; otherwise, it is classified as faulty. In this
approach, we assume that the healthy state of the machine is known, which is
typically the only available case in industrial practice and is characteristic of
the ND approach [8]. By following this method, Table 2 is generated, which
demonstrates an observed increase in detection performance as the rotational
speed increases (100% would be ideal, similar to detecting 600 signals of faulty
states). The percentages shown in the table do not include the healthy states, as
they are properly detected based on the classification method that utilizes the
maximum and minimum affinity rate among all signals labeled as healthy.

7.2. AIS-DTW. To the best knowledge of the authors, only one paper used
DTW in conjunction with AIS for fault detection [6]. That paper, however, has
some major differences with ours. Firstly, they analyzed time-series of variables
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TABLE 2. Novelty detection percentage of the original AIS.

200 Hz | 300 Hz | 400 Hz | 500 Hz
Percentage of Detection | 32.17% | 31.17% | 68.67% | 85.5%

pertinent to batch chemical processes, which are not periodical phenomena. Sec-
ondly, the DTW algorithm was used to calculate a proper distance between an
antibody and an antigen, which differs from our implementation because we are
using the path calculated from DTW, not the distance. Lastly, their work was a
classification problem with multi-categories, whereas the current work is within
an ND paradigm. The uniqueness of our study relies on the unification of DTW
and AIS algorithms, in a pursuit to extract the meaningful aspects from each of
those methodologies, adapt and apply them to the context of fault diagnosis of
bearings.

Continuing, we applied the DTW algorithm to calculate the path that would
minimize the distance between the two time-series, as explained before, and used
that path as a guide for calculating each affinity rate between a given signal and
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the signals in the detectors’ matrix. Our modification essentially alters the
application of Eq. 2, resulting in the following new inequality:

di g — dev < Sy < d; jr + dev (6)
where we changed the kth positions on both vectors to k’th and k”th, which
are the positions calculated by the DTW, which denote the positions of each
vector connect-ed by the cyan lines in Fig. 1 that will be effectively compared in
Eq. 6. In this novel approach, the affinity rate can be found to be higher than
unity, that is due to the path, calculated by the DTW, possibly being longer
than the number of points in a given signal, as in affinity rate’s definition (Eq.
1). Nevertheless, the same denomina-tor was used in all cases, which maintains
the equality of procedure among all states and signals being analyzed.

TABLE 3. Novelty detection percentage of the proposed AIS-
DTW and a comparison with the original algorithm.

200 Hz 300 Hz 400 Hz | 500 Hz
AIS 32.17% 31.17% 68.67% 85.5%
AIS-DTW 43.83% 85.00% 93.83% | 94.00%
Absolute Difference | +11.66% | +53.83% | +25.16% | +8.5%

Figure 4 depicts the results from the proposed method. Each plot of said
figure corresponds to a rotational speed and their y and x-axis represent the mean
affinity rate and its label, respectively, as done in Fig. 3. A great distinction
between healthy and damaged states, compared to the AIS method, is most
clearly noticed on the rotational speeds of 300 and 400 Hz. Similarly, at 500
Hz, however not entirely comparable to Fig. 3, that difference remained, with a
perceptible separation from the healthy state.

By utilizing the same fault detection method as in section 3.1, in combina-
tion with the results from Table 2, we present Table 3. This table exhibits a
similar behavior to Table 2 regarding the increase in the detection percentage as
the rotational speed rises. However, each percentage demonstrates a significant
improvement compared to the standard AIS across all rotational speeds. The
largest disparity between the two methods was observed at 300 Hz, while the
smallest was at 500 Hz. It is important to note that these percentages do not
measure the number of healthy signals detected, but rather only the damaged
ones. This is due to the definition of the implemented method, which ensures
the detection of all healthy signals.

7.3. Time Consumption and Percentage of Detection. The AIS algo-
rithm utilized in this work compares two signals of the same length by comput-
ing the ratio between the number of points that fall within a specific interval
(as shown in Eq. 2) and the length of both signals. Hence, the comparison path
can be interpreted as a sequence of positions from both time-series denoted by
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FIGURE 4. Affinity rate of the AIS-DTW for each damage label.

(i,i), where ¢ = 1,2,..., N, and N represents the length of both signals. In-
terestingly, this comparison path does not require any additional calculations.
On the contrary, the path obtained through DTW necessitates signal compari-
son utilizing the Euclidean distance, as explained in Section 1.2. This process
involves numerous simple calculations (Eq. 1).

Therefore, the time spent effectively using a given path to compare two signals
is nearly the same in AIS and AIS-DTW. The main distinction between these
algorithms lies in the time spent calculating the path, which is negligible in AIS
(as previously explained), but not the case with AIS-DTW. Each analyzed signal
will have a specific DTW path of comparison with every signal in the detectors’
matrix. The time required for one signal to be analyzed by the complete set of
detectors (consisting of 100 healthy signals from a rotational speed of 100 Hz)
is 111.13 £ 4.70s (mean + SD), based on a sample of 50 analyzed signals using
a GPU-accelerated computer routine (NVIDIA TESLA K&80).

The time required for calculating DTW’s path, however, can be reduced by
decreasing the number of signals in the detectors’ matrix. Table 4 demonstrates
the relationship between the number of detectors and the total time taken in
seconds by the proposed method to calculate the array of affinity rates for a single
analyzed signal. Each value represents the mean from a sample of 10 signals,
with the standard deviation shown in parentheses. A significant reduction in
time is observed as the number of signals in the detectors’ matrix decreases.
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Although a smaller number of detectors leads to a shorter array of affinity
rates calculated by the AIS algorithm, it also introduces more uncertainty, as
indicated by the increased standard deviation in Table 5. This uncertainty could
be attributed to the inherent variance of the signal throughout the entire acqui-
sition period, as evident from the distribution of affinity rates for the healthy
states depicted in Figures 4 and 5. The aforementioned table presents the de-
tection percentage (using the previously explained simple detection method) as
a function of the number of signals in the detectors’ matrix. The values in the
table represent the mean and standard deviation derived from a series of 1000
random classifications. This implies that the signals comprising the detectors’
matrix were randomly selected from the initial dataset containing 100 available
signals.

Table 5 reveals that reducing the number of detectors results in a decrease
in detection performance, indicating that more signals from the damaged con-
ditions exhibit affinity rates closer to those of the healthy conditions. The most
significant loss of detection was observed at a rotational speed of 500 Hz (94.00%
to 50.54%), while the lowest loss occurred at 300 Hz (85.00% to 83.68%). In
addition to this loss, an increase in standard deviation is observed as the number
of detectors decreases. However, this trend becomes noticeable only when the
number of signals falls below 80.

TABLE 4. Time spent in seconds and their standard deviation
for the processing of a single signal versus number of signals in
detectors.

Number of Detectors 100 80 60 40 20
Time in Seconds 111.13 | 103.00 | 77.92 | 50.18 | 25.30
(4.70) | (5.11) | (4.06) | (1.20) | (0.96)
Number of Detectors 15 10 5 1 -
Time in Seconds 23.70 | 21.67 | 20.32 | 18.88
(0.82) | (0.73) | (0.46) | (0.04) -

7.4. Discussion. Novelty or anomaly detection methods primarily rely on
extracting features to tackle the two-class (healthy and faulty) classification
problem. It has been shown that AIS is one of the possible machine learning
algorithms that could address this issue by applying a direct comparison between
signals from an unknown state and a baseline state which, in the present work,
corresponds to the healthy state of the analyzed machine working at 100 Hz
and characterizes the novelty detection technique [8]. Furthermore, the AIS
algorithm translates the comparison between two signals into a value called
the affinity rate. Differently from other works, here we interpret this rate as a
feature of a given signal when it is compared to an array of signals (the detectors’
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matrix). By doing so, each analyzed signal can be objectively compared to those
that are from the healthy state in a given working condition.

The first set of results shows that the AIS could reach at least 31.17% of
detection of faulty states from the 300 Hz run and, with our implementation
of said algorithm, a maximum of 85.5%. This difference suggests that both
simulated damages (inner ring and roller indentation) seem to show a pronounced
effect on the dynamics of the system on higher velocities which resulted in a clear
distinction between the mean affinity rate of the healthy and damaged states.

TABLE 5. Percentage of detection versus number of signals in
the detectors’ matrix (1000 runs).

100 30 60 10 20 5 10 5 1
200 | 43.83 | 43.83 | 43.83 | 43.74 | 43.17 | 42.64 | 41.90 | 38.98 | 28.12
(0.00) | (0.00) | (0.07) | (0.36) | (1.34) | (1.94) | (2.73) | (4.66) | (8.22)
300 | 85.00 | 85.00 | 85.00 | 85.00 | 84.98 | 84.06 | 84.91 | 84.75 | 83.68
(0.00) | (0.00) | (0.00) | (0.02) | (0.08) | (0.11) | (0.19) | (0.38) | (1.40)
200 | 93.83 | 93.83 | 93.82 | 93.71 | 9334 | 93.13 | 92.48 | 90.17 | 73.38
(0.00) | (0.00) | (0.07) | (0.28) | (0.80) | (1.01) | (1.91) | (6.43) | (22.21)
500 | 94.00 | 94.00 | 93.83 | 93.09 | 88.47 | 85.80 | 81.45 | 7496 | 50.54
(0.00) | (0.00) | (0.83) | (2.54) | (7.79) | (9.63) | (11.25) | (12.90) | (17.87)

To further enhance the efficiency of the AIS as a novelty detection algorithm,
the DTW algorithm was implemented to aid the comparison path of the AIS
routine. With this modification, all the mean values of every affinity rate array
increased. This increase was expected since the path calculated by the DTW
can have greater lengths than those of the signals. However, this does not affect
the comparison between the healthy and damaged states, as the healthy state
of each tested speed also had the same increase.

The important finding of this investigation is that the implementation of
DTW made the difference between the healthy and damaged states clearer. This
is supported by the fact that the AIS-DTW showed a considerable increase
in detection compared to the simple algorithm explained earlier. The lowest
percentage of anomaly detection was found to be 43.83% at 200 Hz, while the
highest was 94.00% at 500 Hz.

Surprisingly, the velocity with the lowest percentage of detection (300 Hz) in
the standard AIS showed the largest increase, rising from 31.17% to 85.00% with
the use of AIS-DTW. Overall, the absolute differences in detection between AIS
and AIS-DTW suggest that the 300 Hz run is a limiting case, indicating that
damages start to have a noticeable effect after that velocity. Further analysis
with additional signal features could be explored, but it is beyond the scope of
the present work.

Finally, a time consumption analysis was conducted using the same computer
setup. It was observed that the total time required to analyze a single signal is
111.13 s. However, this could be reduced to 18.88 s by decreasing the number of
detectors in the detectors’ matrix. Nonetheless, as expected, this reduction in
time consumption was accompanied by a decrease in the detection percentage.
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The largest drop in detection was observed at 500 Hz, while the smallest drop
was at 300 Hz.

Moreover, the detection percentage at 300 Hz was found to be 83.68% with
a standard deviation of only 1.40% when using a single signal in the detectors’
matrix. This suggests that the machine used for the tests has a velocity at which
the effects of damages on the vibrational signal become more pronounced with
a further increase in velocity. Additionally, there might be an ideal velocity
for detection, one that yields the clearest distinction between healthy and faulty
states, as observed at 300 Hz using the affinity rates calculated by the AIS-DTW.

8. Conclusion

A new modification to the standard AIS algorithm, utilizing the path of com-
parison calculated by the DTW algorithm, is presented in this paper. The detec-
tors’ matrix used in this work consists of signals from a single rotational speed
(100 Hz). The z-score normalization technique is explained and employed to
enable this comparison. Our novel approach allows for the detection of faults in
rolling bearings by analyzing vibrational signals from various rotational speeds,
requiring minimal expert knowledge. We compared our new approach with the
standard AIS, demonstrating an improvement in novelty detection (i.e., fault de-
tection) performance through an experiment using a publicly available dataset.
The increase in detection ranged from a minimum of 8.50% (from 85.50% to
94.00% fault detection at 500 Hz) to a maximum of 53.83% (from 31.17% to
85.00% at 300 Hz). Additionally, we investigated the time consumption re-
quired to analyze a single signal within our framework by varying the number
of signals in the detectors’ matrix. Reducing the number of signals from 100
to 80 resulted in a negligible loss of detection and a reduction of 8.13 s in time
consumption (from a total of 111.13 s). In the extreme case of only one signal
in the detectors’ matrix, our algorithm takes 18.88 s to analyze a single signal.
However, the detection rates decreased from 94.00% to 50.54% at 500 Hz and
from 85.00% to 83.68% at 300 Hz, suggesting an ideal rotational speed for de-
tection using our approach with The Politecnico di Torino’s public dataset of
vibrational signals. Overall, our approach has demonstrated the ability to detect
faults by analyzing vibrational signals from different rotational speeds.
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