• Title/Summary/Keyword: pseudo order

Search Result 1,051, Processing Time 0.024 seconds

Identification of Volterra Kernels of Nonlinear Van do Vusse Reactor

  • Kashiwagi, Hiroshi;Rong, Li
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.109-113
    • /
    • 2002
  • Van de Vusse reactor is known as a highly nonlinear chemical process and has been considered by a number of researchers as a benchmark problem for nonlinear chemical process. Various identification methods for nonlinear system are also verified by applying these methods to Van de Vusse reactor. From the point of view of identification, only the Volterra kernel of second order has been obtained until now. In this paper, the authors show that Volterra kernels of nonlinear Van de Vusse reactor of up to 3rd order are obtained by use of M-sequence correlation method. A pseudo-random M-sequence is applied to Van de Vusse reactor as an input and its output is measured. Taking the crosscorrelation function between the input and the output, we obtain up to 3rd order Volterra kernels, which is the highest order Volterra kernel obtained until now for Van de Vusse reactor. Computer simulations show that when Van de Vusse chemical process is identified by use of up to 3rd order Volterra kernels, a good agreement is observed between the calculated output and the actual output.

A Study on Oxidative Degradation of Chlorophenols by Heat Activated Persulfate (열적활성화된 과황산에 의한 염화페놀의 산화분해특성 연구)

  • Son, JiMin;Kwon, Hee-Won;Hwang, Inseong;Kim, Jeong-Jin;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • Oxidative degradation of phenol, three monochlorophenols (2-chlorophenol, 2-CP; 3-chlorophenol, 3-CP; 4-chlorophenol, 4-CP), four dichlorophenols (2,3-dichlorophenol, 2,3-DCP; 2,4-dichlorophenol, 2,4-DCP; 2,5-dichlorophenol, 2,5-DCP; 2,6-dichlorophenol, 2,6-DCP), and two trichlorophenols (2,4,5-trichlorophenol, 2,4,5-TCP; 2,4,6-trichlorophenol, 2,4,6-TCP) was conducted with heat activated persulfate. As the number of chlorinations increased, the reaction rate also increased. The reaction rate was relatively well fitted to the zero-order kinetic model, rather than the pseudo-first order kinetic model for the reactions at 60 ℃, which can be explained by insufficient activation of the persulfate at 60 ℃, and the oxidation reaction of 2,4,6-TCP at 70 ℃ was relatively well fitted to the pseudo-first order kinetic model. The oxidation reaction rate generally increased with increase of persulfate concentration in the solution. 2,6-dichloro-2,5-cyclohexadiene-1,4-dione was found as a degradation product in a GC/MS analysis. This compound is a non-aromatic compound, and one chlorine was removed. This result is similar to the result of previous studies. The current study proved that heat activated persulfate activation could be an alternative remediation technology for phenol and chlorophenols in soil and groundwater.

Competitive Adsorption in Binary Solution with Different Mole Ratio of Sr and Cs by Zeolite A : Adsorption Isotherm and Kinetics (스트론튬과 세슘 이온의 혼합 몰비를 달리한 이성분 용액에서 제올라이트 A에 의한 경쟁 흡착: 흡착등온 및 속도해석)

  • Lee, Chang-Han;Park, Jeong-Min;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.151-162
    • /
    • 2015
  • The adsorption characteristics of Sr ions and Cs ions in single and binary solution by zeolite A were investigated in batch experiment. The adsorption rate of Sr ions and Cs ions by zeolite A obeyed pseudo-second-order kinetic model in single and binary solution. The initial adsorption rates (h) and adsorption capacities of both ions obtained from pseudo-second-order kinetic model, and the values were decreased with increasing concentration of the competitive ions (0~1.5 mM). Also, adsorption isotherm data in binary solution were well fitted to the extended Langmuir model, the maximum adsorption capacities of Sr and Cs calculated from the model were 1.78 mmol/g and 1.64 mmol/g, respectively. The adsorption of Sr and Cs ions by zeolite A was carried out in the presence of other cations such as $Na^+$, $K^+$, $Mg^{2+}$ and $Ca^{2+}$. The results showed that the zeolite A can maintain a relatively high adsorption capacity for Sr and Cs ions and exhibits a high selectivity in the presence of competitive cations. The effect of competition had an order of $Ca^{2+}$ > $K^+$ > $Mg^{2+}$ > $Na^+$ for Sr ions and $K^+$ > $Ca^{2+}$ > $Na^+$ > $Mg^{2+}$ for Cs ions at the same cation concentration.

Chemical Modification of 5-Lipoxygenase from the Korean Red Potato

  • Kim, Kyoung-Ja
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.172-178
    • /
    • 2000
  • The lipoxygenase was purified 35 fold to homogeneity from the Korean red potato by an ammonium sulfate precipitation and DEAE-cellulose column chromatography. The simple purification method is useful for the preparation of pure lipoxygenase. The molecular weight of the enzyme was estimated to be 38,000 by SDS-polyacrylamide gel electrophoreses and Sepharose 6B column chromatography. The purified enzyme with 2 M $(NH_4)_2SO_4$ in a potassium phosphate buffer, pH 7.0, was very stable for 5 months at $-20^{\circ}C$. Because the purified lipoxygenase is very stable, it could be useful for the screening of a lipoxygenase inhibitor. The optimal pH and temperature for lipoxygenase purified from the red potato were found to be pH 9.0. and $30^{\circ}C$, respectively. The Km and Vmax values for linoleic acid of the lipoxygenase purified from the red potato were $48\;{\mu}M$ and $0.03\;{\mu}M$ per minute per milligram of protein, respectively. The enzyme was insensitive to the metal chelating agents tested (2 mM KCN, 1 and 10mM EDTA, and 1 mM $NaN_3$), but was inhibited by several divalent cations, such as $Cu^{++}$, $Co^{++}$ and $Ni^{++}$. The essential amino acids that were involved in the catalytic mechanism of the 5-lipoxygenase from the Korean red potato were determined by chemical modification studies. The catalytic activity of lipoxygenase from the red potato was seriously reduced after treatment with a diethylpyrocarbonate (DEPC) modifying histidine residue and Woodward's reagent (WRK) modifying aspartic/glutamic acid. The inactivation reaction of DEPC (WRK) processed in the form of pseudo-first-order kinetics. The double-logarithmic plot of the observed pseudo-first-order rate constant against the modifier concentration yielded a reaction order 2, indicating that two histidine residues (carboxylic acids) were essential for the lipoxygenase activity from the red potato. The linoleic acid protected the enzyme against inactivation by DEPC(WRK), revealing that histidine and carboxylic amino acids residues were present at the substrate binding site of the enzyme molecules.

  • PDF

Characterization of Bottom Ash as an Adsorbent of Lead from Aqueous Solutions

  • Gorme, Joan B.;Maniquiz, Marla C.;Kim, Soon-Seok;Son, Young-Gyu;Kim, Yun-Tae;Kim, Lee-Hyung
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.207-213
    • /
    • 2010
  • This study investigated the potential of using bottom ash to be used as an adsorbent for the removal of lead (Pb) from aqueous solutions. The physical and chemical characteristics of bottom ash were determined, with a series of leaching and adsorption experiments performed to evaluate the suitability of bottom ash as an adsorbent material. Trace elements were present, such as silicon and aluminum, indicating that the material had a good adsorption capacity. All heavy metals leached during the Korea standard leaching test (KSLT) passed the regulatory limits for safe disposal, while batch adsorption experiments showed that bottom ash was capable of adsorbing Pb (experimental $q_e$ = 0.05 mg/g), wherein the adsorption rate increased with decreasing particle size. The adsorption data were then fitted to kinetic models, including Lagergren first-order and Pseudo-second order, as well as the Elovich equation, and isotherm models, including the Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The results showed that pseudo-second order kinetics was the most suitable model for describing the kinetic adsorption, while the Freundlich isotherm best represented the equilibrium sorption onto bottom ash. The maximum sorption capacity and energy of adsorption of bottom ash were 0.315 mg/g and 7.01 KJ/mol, respectively.

Kinetics and Isotherm Analysis of Valuable Metal Ion Adsorption by Zeolite Synthesized from Coal Fly Ash (석탄비산재로부터 합성한 제올라이트를 이용한 유가금속이온의 흡착속도 및 등온 해석)

  • Ahn, Kab-Hwan;Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.83-90
    • /
    • 2018
  • In this study, zeolite (Z-C2) was synthesized using a fusion/hydrothermal method on coal fly ash (FA) discharged from a thermal power plant in the Ulsan area and then analyzed via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The Z-C2 was characterized in terms of mineralogical composition and morphological analysis. The XRD results showed that its peaks had the characteristics of Na-A zeolite in the range of $2{\theta}$ of 7.18~34.18. The SEM images confirmed that the Na-A zeolite crystals had a chamfered-edge crystal structure almost identical to that of the commercial zeolite. The adsorption kinetics of Cu, Co, Mn and Zn ions by Z-C2 were described better by the pseudo-second-order kinetic model more than by the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model did. The maximum adsorption capacities of Cu, Co, Mn and Zn ions obtained from the Langmuir model were in the following order : Cu (94.7 mg/g) > Co (77.7 mg/g) > Mn (57.6 mg/g) > Zn (51.1 mg/g). These adsorption capacities are regarded as excellent compared to those of commercial zeolite.

Removal of heavy metals in electroplating wastewater by powdered activated carbon (PAC) and sodium diethyldithiocarbamate-modified PAC

  • Kim, Tae-Kyoung;Kim, Taeyeon;Choe, Woo-Seok;Kim, Moon-Kyung;Jung, Yong-Jun;Zoh, Kyung-Duk
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.301-308
    • /
    • 2018
  • We investigated simultaneous removal of heavy metals such as Cr, Ni, and Zn by adsorption onto powdered activated carbon (PAC) and PAC modified with sodium diethyldithiocarbamate (PAC-SDDC). Modification of PAC was confirmed by Fourier transform infrared spectroscopy and Scanning electron microscopy and energy dispersive X-ray spectroscopy. Both PAC and PAC-SDDC reached adsorption equilibrium within 48 h, and the adsorption kinetics followed a pseudo-second order reaction kinetics. The removal of metals was enhanced with increasing both adsorbent dosage and followed the descending order of Cr > Ni > Zn for PAC and Cr > Zn > Ni for PAC-SDDC, respectively. Adsorption kinetics followed pseudo-second order kinetics. Adsorption kinetic results were well fitted by the Freundlich isotherm except for Cr adsorption onto PAC. The optimum pH for heavy metal adsorption onto PAC was 5, whereas that for PAC-SDDC ranged from 7 to 9, indicating that modification of PAC with SDDC significantly enhanced heavy metal adsorption, especially under neutral and alkaline pH conditions. Our results imply that SDDC modified PAC can be applied to effectively remove heavy metals especially Cr in plating wastewaters without adjusting pH from alkaline to neutral.

The effect of crosslinking and dry for the adsorption rate on the chitosan bead (키토산 비드의 교차결합(crosslinking)과 건조공정이 흡착속도에 미치는 영향)

  • Shin, Jeongwoo;Kim, Taehoon;Lee, Youngmin;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.4
    • /
    • pp.301-309
    • /
    • 2021
  • Chitosan, natural organic polymer, has been applied in water treatment as adsorbent due to non-toxic for human being. The amino group as functional group, can interacts with cation and anion at the same time. The prepared chitosan bead (HCB) was crosslinked to increase chemical stability (HCB-G) and both HCB and HCB-G were prepared to increase physical strength by drying referred to DCB and DCB-G, respectively. The adsorption effect for crosslinking and drying for four types of chitosan bead was tested using pseudo fist order (PFO), pseudo second order (PSO), and intraparticle diffusion model (ID). Regardless of PFO and PSO, the order of K, rate constant, is as followed: HCB > HCB-G > DCB > DCB-G for Cu(II) and phosphate. Drying leading to contraction of bead significantly reduced adsorption rate due to reduce the porosity of chitosan. In addition, crosslingking also negatively effect on adsorption rate. When compared with Cu(II) using hydrogel bead, phosphate showed higher value than Cu(II) for PFO and PSO. The application of ID showed that both hydrogel beads (HCB and HCB-G) obtained a very low R2 ranging to 0.37 to 0.81, while R2 can be obtained to over 0.9 for DCB and DCB-G, indicting ID is appropriate for low adsorption rate.

Characteristics of Cu and Cs Ions adsorbed on an immobilized Adsorbent including Zeolite Synthesized from Jeju Scoria (제주 스코리아로부터 합성한 제올라이트계 고정화 흡착제에 의한 Cu와 Cs 이온의 흡착 특성)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • The adsorption properties of $Cs^+$ and $Cu^{2+}$ ions were evaluated by using a polysulfone scoria zeolite (PSf-SZ) composite with synthetic zeolite synthesized from Jeju volcanic rocks (scoria). In order to investigate the adsorption properties, various parameters, such as pH, contact time, reaction rate, concentration, and temperature in aqueous solutions, were evaluated by tests carried out in batch experiments. The adsorption capacities of $Cs^+$ and $Cu^{2+}$ ions increased between pH 2 but achieved equilibrium at pH 4 and above. The adsorption rate increased rapidly up to the initial 24 h, after which it plateaued ; the adsorption rate then sustained at equilibrium from 48 h. The adsorption kinetics of $Cs^+$ and $Cu^{2+}$ ions were described better by the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model. The maximum adsorption capacities of $Cs^+$ and $Cu^{2+}$ ions obtained from the Langmuir model were 53.8 mg/g and 84.7 mg/g, respectively. The calculated thermodynamic parameters showed that the adsorption of $Cs^+$ and $Cu^{2+}$ ions on PSf-SZ was feasible, spontaneous and endothermic reaction.

Adsorption and Desorption Characteristics of Sr, Cs, and Na Ions with Na-A Zeolite Synthesized from Coal Fly Ash in Low-Alkali Condition (석탄 비산재로부터 저알칼리 조건에서 합성된 Na-A 제올라이트의 Sr, Cs 및 Na 이온의 흡탈착 특성)

  • Choi, Jeong-Hak;Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.28 no.6
    • /
    • pp.561-570
    • /
    • 2019
  • A zeolitic material (Z-Y2) was synthesized from Coal Fly Ash (CFA) using a fusion/hydrothermal method under low-alkali condition (NaOH/CFA = 0.6). The adsorption performance of the prepared zeolite was evaluated by monitoring its removal efficiencies for Sr and Cs ions, which are well-known as significant radionuclides in liquid radioactive waste. The XRD (X-ray diffraction) patterns of the synthesized Z-Y2 indicated that a Na-A type zeolite was formed from raw coal fly ash. The SEM (scanning electron microscope) images also showed that a cubic crystal structure of size $1{\sim}3{\mu}m$ was formed on its surface. In the adsorption kinetic analysis, the adsorption of Sr and Cs ions on Z-Y2 fitted the pseudo-second-order kinetic model well, instead of the pseudo-first-order kinetic model. The second-order kinetic rate constant ($k_2$) was determined to be $0.0614g/mmol{\cdot}min$ for Sr and $1.8172g/mmol{\cdot}min$ for Cs. The adsorption equilibria of Sr and Cs ions on Z-Y2 were fitted successfully by Langmuir model. The maximum adsorption capacity ($q_m$) of Sr and Cs was calculated as 1.6846 mmol/g and 1.2055 mmol/g, respectively. The maximum desorption capacity ($q_{dm}$) of the Na ions estimated via the Langmuir desorption model was 2.4196 mmol/g for Sr and 2.1870 mmol/g for Cs. The molar ratio of the desorption/adsorption capacity ($q_{dm}/q_m$) was determined to be 1.44 for Na/Sr and 1.81 for Na/Cs, indicating that the amounts of desorbed Na ions and adsorbed Sr and Cs ions did not yield an equimolar ratio when using Z-Y2.