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Identification of Volterra Kernels of Nonlinear Van de Vusse

Reactor
Hiroshi Kashiwagi and Li Rong

Abstract: Van de Vusse reactor is known as a highly nonlinear chemical process and has been considered by a number of researchers
as a benchmark problem for nonlinear chemical process. Various identification methods for nonlinear system are also verified by
applying these methods to Van de Vusse reactor. From the point of view of identification, only the Volterra kernel of second order has
been obtained until now. In this paper, the authors show that Volterra kernels of nonlinear Van de Vusse reactor of up to 3rd order are
obtained by use of M-sequence correlation method. A pseudo-random M-sequence is applied to Van de Vusse reactor as an input and its
output is measured. Taking the crosscorrelation function between the input and the output, we obtain up to 3rd order Volterra kernels,
which is the highest order Volterra kernel obtained until now for Van de Vusse reactor. Computer simulations show that when Van de
Vusse chemical process is identified by use of up to 3rd order Volterra kernels, a good agreement is observed between the calculated

output and the actual output.
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I. Introduction

Van de Vusse reactor is one of the highly nonlinear processes
which have been used by many researchers as a benchmark for
control problem; Van de Vusse”, Kantor®, Doyle V et al?.

From the point of view of identification problem, Doyle V et
al® obtained up to second order Volterra kernel, but no further
research on the more precise identification has been reported
until now.

Recently, one of the authors has developed a method for ob-
taining Volterra kernels of up to 3rd order of a nonlinear system
by use of M-sequence correlation method®. In this method, a
pseudo-random M-sequence is applied to a nonlinear process
and the crosscorrelation function between the input and the out-
put is measured. Then from the crosscorrelation function we
can obtain up to 3rd order Volterra kernels.

This method of nonlinear system identification is applied to
the highly nonlinear Van de Vusse reactor. Volterra kernels of
Van de Vusse reactor of up to 3rd order are shown to be obtained
by use of M-sequence correlation method.

II. Van de Vusse reactor

Van de Vusse reactor is known as a highly nonlinear process
and quite frequently used as a benchmark test for various con-
trol strategiesz)’s)’7) .

In this reactor, a product A is to be converted to the de-
sired product B, in an isothermal continuous stirred tank reactor
(CSTR), but the product B is degradated to product C.

In addition to this consecutive reaction, a high-order paral-
lel reaction occurs and A is converted to by-product D. The
reaction scheme is as follows
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where k1, k2, ks are the reaction rate constants, and the perfor-
mance of the reactor is dependent on the relative values between
these reaction rate constants.

When the concentration of product A and B is denoted by
C4 and C, respectively, we have the following mass balance
equation.

d—g-té = ~k)1CA—k3C%+€(C_\f—CA)
LB = kCa—kCs - 5Cp M
y = (s

where F' is the inlet flow rate, and V' is the volume of the
CSTR. Cay is the concentration of A in the inlet flow. y is
the output of the process. We would like to know the dynamic
characteristics from the inlet flow rate F’ to y, the concentration
of product B.

Here, for simplicity, the process variables are normalized
with respect to the operating point. That is, when we take the
operating point as, Cag = 3.0mol/l, Co = 2.84mol/l,
Fy/V = 55.7/h, and kinetic parameters as k1 = 100/h,
ko = 50/h, ks = 10l/mol/h, Cay = 10mol/l, V = 1,
we have

1 = 10021 — 1027 + u(10 ~ 1)
L2 = 10021 — 5022 —u - 22 )
yoo= a2

where x1 denotes the deviation variable for the concentration of
A, and z2 denotes that for B. u is the inlet flow rate around the
operating point. The dynamic characteristics from « to ¥ is to
be obtained.

In order to know the nonlinear characteristics of this reactor,
let us show the static characteristics between v and y. Fig.1
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shows the static output change with respect to the input «, which
displays a nonlinear property that when the input u becomes
greater than a certain value, the output begins to decrease. So
the left of the peak and the right side have completely different
behavior, showing high nonlinear characteristics.

For this Van de Vusse reactor, Doyle V2 used the Carleman
linearization method to obtain bilinear model, from which they
obtained 2nd Volterra kernel.

Now we will show in the next section that 3rd Volterra kernel
for this Van de Vusse reactor process can be obtained by use of
M-sequence correlation method.
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Fig. 1. Static input-output relationship.

11 The principle of identification of Volterra kernel
by use of M-sequence®
Consider the identification of a nonlinear system which can
be described as follows,

y(t):2/0”/Ow‘../omgi(fm,...n)

Xu(t~7'1)u(t—7‘2)-~-u(t—7'i)d7‘1d7'2---dTi (3)

where u(t) is the input, and y(¢) is the output of the nonlin-
ear system, and g;(71, 72, ...7:) is called Volterra kernel of ¢-th
order. When ¢ = 1, Eqn.(3) shows linear system.

In order to get the Volterra kernels g; (71, 72, ...7:), we use an
M-sequance as an input to the nonlinear system. The crosscor-
relation function ¢, (7) between the input u(t) and the output
y(t) can be written as,

Puy () = u(t — T)y(?)

R oo oo oo
:Z/ / / gi(T1, 72, - Ts)
=1 V0 0 0

xu(t — T)u(t — 1) ult — m)dndry - - - dr

)

where PPPP denotes time average. Usually the n-th moment of
u(t) is difficult to obtain. But when we use M-sequence, we can
get n-th moment of u(t) easily. Namely, the (¢ 4+ 1)th moment
of the input M-sequence u(t) can be written as

w(t — T)ult — m)u(t —72) - u(t — Ti)

_ { 1 (for certain 7) )

—1/N  (otherwise)

where N is the period of the M-sequence. When we use the M-
sequence with the degree greater than 16, 1/N is in the order
of 1075, So Eqn.(5) can be approximated as a set of impulses
which appear at certain 7’s.

Let us consider the case where we measure i-th Volterra
kernel. Then for any integer kﬁ),kg), ~--k£fi),1
kf{) < kfé) < e kgfll), there exists a unique kff) (mod N)
such that

(suppose

w()u(t + kD Atyu(t + kD AL) - u(t + k) Ar)

1,i—1
= u(t+ kD At) (©6)

where j is the number of a group (ki1, kiz,- -+, k1) for
which Eqn.(6) holds and At is the time increment. This prop-
erty is called “shift and add property” of the M-sequence (see
Appendix). We assume that total number of those groups is
m(thatis, 5 = 1,2, - - -, m;). Therefore Eqn.(5) becomes unity
when

Tn=T7T— kg)At, Ty =T— kg)At, Ty =T — k:g)At @)

Therefore Eqn.(4) becomes

oo Ty

bun(r) = 3 gilr— kP At kP AL, -7 =k At)

i=1 j=1
(8)
Since gi(71, 72, - 7i) is zero when any of 7; is smaller than
zero, each gi(r-kg)At, T—kg)At, e T~k§f)At) in Eqn.(8)
appear in the crosscorrelation function ¢ (7) when 7 > kff ),
In order to obtain the Volterra kernels from Eqn.(8), kff ) in
Eqn.(8) must be sufficiently apart from each other. For this to be
realized, we have to select suitable M-sequences, which make
the appearance of each cross-section of Volterra kernels suffi-
ciently apart from each other. Some of the example of those
usable M-sequences are the M-sequence having the generating
characteristic polynomial f(z) = 245165, 221321, 311171 in
octal notation with which we can obtain go (71, T2) for 72 — 71
from 1A¢ to 20A¢, ga(71, T2, T3) for 73 — 71 from 1A¢ to 20At
and for 73 — 72 from 1At to 19A¢, from the observation of only
one crosscorrelation function between the input and output.4)’5)
When we measure Volterra kernels up to 3rd order, the cross-
correlation function ¢, (7) becomes,

buy(7) = Atgi (1) + F(T)

ma
+2(A1)° ) ga(r — kP AL T - kE At)

i=1

m3
+6(A8)° Y ga(r — K At 7 — K At T — k) At)

j=1
)]
where
F(r) = (At)*gs(r, 7, 7) + 3(A8)° Y _ ga(r, qAAt, qAAY)
q=1
(10)
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In general case, we have,
buy(T) = Atgi(7) + F( )
+ Z (Aat) Zg, r— kAt T — k9 At,

D

Here the function F'(7) is the function of 7 and sum of the odd
order Volterra kernels when some of its arguments are equal.
Since F'(7) appears together with g1(7) in a overlapped man-
ner, F'(r) must be calculated from the odd order Volterra ker-
nels and be subtracted from the measured g, (7) in order to ob-
tain the accurate g1 (7).

IV. Procedure for obtaining Volterra kernels

Eqn.(11) shows that the crosscorrelation function between
the input M-sequence and the output contains all the crosssec-
tions of Volterra kernels, which are actually sliced crosssections
of Volterra kernels along the diagonal direction.

Here the procedure for obtaining Volterra kernels from the
crosscorrelation ¢, (7) is briefly explained, as in the following
steps.

1) Firstly we choose a suitable M-sequence for this purpose
as is shown in section III, and carry out the experiment obtain-
ing the crosscorrelation functin ¢, (7).

2) Since kff Vs in Eqgn.(11) are obtained beforehand by com-
puter search, we know a certain slice of Volterra kernel appear
at a certain 7.

For example, gz(T — DAt — k8 At) (58 < k) ap-
pears in the range k At <7< kgjz)At—i—QOAt since Volterra
kernels are zero when its arguments are negative. Note here that
the suitable M-sequence is selected so as for other prominent
kernel slices not to appear in this range. Now we obtain the
second Volterra kernel slice as

e) ) Nuy(r)
ga(r — K AL T — KA = T AN (AL
(for k) At < 7 < k) At + 20At) (12)

Therefore we can gather those kernel slices of g2(71,72) to
construct g2(71, T2), the second order Volterra kernel.

3) The third Volterra kernel is also obtained in the same way,
by collecting kernel slices of g3 (71, T2, T3) from the crosscorre-
lation function ¢y (7).

Nepuy(r)
6N (AL)3’

(for k) At < 7 < kDAt +19AL) (13)

gs(1 — kD At, T — k) At T - k) At) =

4) The first order Volterra kernel is obtained from subtraction
of the overlaping 3rd Volterra kernel as follows.

_ Neuy(7)
9" = —Nas
—(At)*(3)  ga(r, it iAt) — 2g3(r, 7, 7)) (14)
=0
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Fig. 2. Volterra kernel of first order g1(7)
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Fig. 3. Volterra kernel of second order g2 (71, T2)
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Fig. 4. Volterra kernel of third order ga (71, 72, 73) for 73 = 1At

V. ldentification of Van de Vusse reactor

The method of identification of Volterra kernels of nonlinear
system by use of M-sequence correlation method is applied to
nonlinear Van de Vusse reactor as shown in Eqn.(2).

16th degree M-sequence with the characteristic polynomial,
f(x) = 260577, in octal notation, is used as the input u(t). The
first, second and third order Volterra kernels of the system are
measured by calculating the crosscorrelation between the input
and the output.

Fig.2 shows the first order Volterra kernel g1 (7) thus mea-
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Fig. 5. Comparison of actual output with estimated one by use
of only first order Volterra kernel.
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Fig. 6. Comparison of actual output with estimated one by use
of up to second order Volterra kernels.
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Fig. 7. Comparison of actual output with estimated one by use
of up to third order Volterra kernels.

sured.

Fig.3 shows the second order Volterra kernel g2 (71, 72).

Fig.4 shows one of the crosssection of the third Volterra ker-
nel gs(71, 72, 73), when 13 = 1At

By use of the measured Volterra kernels g1, g2, g3, we calcu-
late the output change for the input of sin(0.07t), and compare
with the actual output obtained from Eqn.(2).

Fig.5 shows the result of comparison of the actual output
(solid line) with the output (diamond line) calculated by use of
only first order Volterra kernel. We see there is a big difference
between them.

Fig.6 shows the result of comparison of the actual output
(solid line) with the output (diamond line ) calculated by use of
up to 2nd order Volterra kernels. We see the calculated output
from up to second order Volterra kernels is closer to the actual
output than in case of just first order Volterra kernel. But still
we see some differences between them.

Fig.7 shows the result of comparison of the actual output
(solid line) with the output (diamond line) calculated by use of
up to 3rd order Volterra kernels, showing good agreement be-
tween them. From these results of simulation we can say that
the use of up to 3rd order Volterra kernels for Van de Vusse re-
actor is very effective for describing the dynamic behavior of
the reactor.

VI. Conclusions

The duthors have presented here a method for obtaining up
to 3rd order Volterra kernels of Van de Vusse reactor which is
known as a highly nonlinear chemical process by use of M-
sequence correlation method. From the result of simulation,
we see that when the output is estimated by use of up to 3rd
order measured Volterra kernels, the estimated output shows a
good agreement with the actual output. It is expected that the
use of up to 3rd order Volterra kernels for Van de Vusse reactor
would be very effective as a benchmark problem for nonlinear
chemical process for describing the dynamic characteristics of
the reactor being used.

Appendix

M-sequence is one of the psendorandom sequences, and is
easily generated by a shift register with suitable feedback. M-
sequence is widely used in control engineering as a simulation
of actual noise, as a test signal for communication, as a signal
for measuring a time delay and so on. Here we explain about
two-level M-sequence.

M-sequence can be generated with an n-stage shift register
circuit as shown in Fig.A.1. Each stage of the shift register
contains 0 or 1, and each output is multiplied by a coefficient f;
(equal to 0 or 1) and added mod 2 and fed back. In the circuit,
@ denotes an exclusive OR circuit. The initial conditon of the
shift register can be taken arbitrarily except for all zero. When
the feedback coefficients f; are suitably chosen, the generated
sequence a; has the maximum period N = 2™ — 1 and is called
M-sequence. The sequence a; is written as

n—1
Qi4n = Z fjai+j (mod 2) (15)
=0
Letting f, = 1, we have
n
Z fitir; =0
j=0
These expressions are called linear recurrence equations. When

we introduce a delay operator z such as a;1; = z7a;, Eqn.(16)
becomes

(mod 2) (16)

(ijxf>ai =0 (17)
§=0
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Here, the polynomial

fl@) = fia (fo#0,fa=1) (8
j=0

is called the characteristic polynomial. The coefficients f; of
the sequence a; are 0 or 1, and the multiplication and addition
between them obey mod 2 arithmetic. Therefore, the coeffi-
cients f; of sequence a; are considered to belong to Galoir Field
GF(2).

Usually we denote f(x) by its coefficients in octal notation
for simplicity. For example, when f(z) = 1+z* +x°+2°+25,
the coefficients becomes {f;} = 100011101, which can be
expressed as f(z) = 435 in octal notation.

The necessary and sufficient condition that the sequence a;
is an M-sequence is that the characteristic polynomial f(z) is
a primitive polynomial over GF'(2). A primitive polynomial is
polynomial which divides 2* — 1 when & = 2™ — 1, but does
not divide * — 1 when § < & < 2™ — 1. Primitive polynomials
over GF(2) are found in Peterson® and Zierler and Brillhart®).

Fig.A.1FM-sequence generator

Among many properties of M-sequence, two properties re-
lated to this paper are stated as follows.

Property 1 : The modulo 2 sum of an M-sequence and a
cyclic shift of itself is another M-sequence of the same order.
In short, it represents some other cyclic shift of the original M-
sequence. This property is called shift and add property of M-
sequence. In general, there exists a unique v such that

$1Gi—1 + 820i—2 + - + SpQicn = Gitu 19

where s1, 82, -+, $n € GF(2).
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Property 2 : When {a;} (a; = 0 or 1) is converted to {m;}
(m; = 1 or —1) by m; = 1 — 2a,, the auto-correlation function
dmm (k) of an M-sequence is given by

N-—1
1
d)mm(k) = ]—V: ZO Q;— Qg

1 (k=0,N,2N,--")
- —i ( otherwise) 20)
NG s

If N is large, ¢mm (k) is approximately equal to a §-function
and the M-sequence becomes almost a white random signal.
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