DOI QR코드

DOI QR Code

Kinetics and Isotherm Analysis of Valuable Metal Ion Adsorption by Zeolite Synthesized from Coal Fly Ash

석탄비산재로부터 합성한 제올라이트를 이용한 유가금속이온의 흡착속도 및 등온 해석

  • Ahn, Kab-Hwan (Department of Environmental Adminstration, Catholic University of Pusan) ;
  • Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • 안갑환 (부산가톨릭대학교 환경행정학과) ;
  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 이민규 (부경대학교 화학공학과)
  • Received : 2017.12.05
  • Accepted : 2018.01.09
  • Published : 2018.02.28

Abstract

In this study, zeolite (Z-C2) was synthesized using a fusion/hydrothermal method on coal fly ash (FA) discharged from a thermal power plant in the Ulsan area and then analyzed via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The Z-C2 was characterized in terms of mineralogical composition and morphological analysis. The XRD results showed that its peaks had the characteristics of Na-A zeolite in the range of $2{\theta}$ of 7.18~34.18. The SEM images confirmed that the Na-A zeolite crystals had a chamfered-edge crystal structure almost identical to that of the commercial zeolite. The adsorption kinetics of Cu, Co, Mn and Zn ions by Z-C2 were described better by the pseudo-second-order kinetic model more than by the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model did. The maximum adsorption capacities of Cu, Co, Mn and Zn ions obtained from the Langmuir model were in the following order : Cu (94.7 mg/g) > Co (77.7 mg/g) > Mn (57.6 mg/g) > Zn (51.1 mg/g). These adsorption capacities are regarded as excellent compared to those of commercial zeolite.

Keywords

References

  1. Apiratikul, R., Pavasant, P., 2008, Sorption of $Cu^{2+},\;Cd^{2+},\;and\;Pb^{2+}$ using modified zeolite from coal fly ash, Chem. Eng. J., 144, 245-258. https://doi.org/10.1016/j.cej.2008.01.038
  2. El-Kamash, A. M., Zaki, A. A., Geleel, M. A. E., 2005, Modelling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A, J. Hazard. Mater., 127, 211-220. https://doi.org/10.1016/j.jhazmat.2005.07.021
  3. El-Rahman, K. M. A., El-Sourougy, M. R., Abdel-Monem, N. M., Ismail, I. M., 2006, Modeling the sorption kinetics of cesium and strontium ions on zeolite A, J. Nuclear Radiochem. Sci., 7, 21-27. https://doi.org/10.14494/jnrs2000.7.2_21
  4. Freundlich, H. M. F., 1906, Over the adsorption in solution, J. Phys. Chem., 57, 385-470.
  5. Ho, Y. S., McKay, G., 1998, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76, 822-827. https://doi.org/10.1002/cjce.5450760419
  6. Hollman, G. G., Steenbruggen, G., Janssen-Jurkovicova, M., 1999, A Two-step process for the synthesis of zeolites from coal fly ash, Fuel, 78, 1225-1230. https://doi.org/10.1016/S0016-2361(99)00030-7
  7. Hui, K. S., Chao, C. Y. H., Kot, S. C., 2005, Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, J. Hazard. Mater., 127, 89-101. https://doi.org/10.1016/j.jhazmat.2005.06.027
  8. Lagergren, S., 1898, About the theory of so-called adsorption of soluble substances, Kunglia Svenska Vetenskapsa-kademiens Handlingar, 24, 1-39.
  9. Langmuir, I., 1918, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403. https://doi.org/10.1021/ja02242a004
  10. Lee, C. H., Kam, S. K., Lee, M. G., 2015, Removal of Sr and Cs ions by SAN-zeolite beads prepared by immobilization of zeolite with SAN, J. Environ. Sci. Int., 24, 1331-1341. https://doi.org/10.5322/JESI.2015.24.11.1331
  11. Lee, C. H., Park, J. W., 2011, Synthesis of zeolite using discharged fly ash in an industrial complex in Ulsan, J. Korean Soc. Environ. Eng., 33, 301-316. https://doi.org/10.4491/KSEE.2011.33.5.301
  12. Molina, A., Poole, C., 2004, A Comparative study using two methods to produce zeolites from fly ash, Mine. Eng., 17, 167-173.
  13. Nibou, D., Mekatel, H., Amokrane, S., Barkat, M., Trari, M., 2010, Adsorption of $Zn^{2+}$ ions onto NaA and NaX zeolites: Kinetic, equilibrium and thermodynamic studies, J. Hazard. Mater., 173, 637-646. https://doi.org/10.1016/j.jhazmat.2009.08.132
  14. Qui, W., Zheng, Y., 2009, Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash, Chem. Eng. J., 145, 483-488. https://doi.org/10.1016/j.cej.2008.05.001
  15. Shin, J. Y., Han, S. J., Wee, J. H., 2014, Leaching property of coal fly ash using water as the solvent and its carbonation performance, J. Korean Soc. Environ. Eng., 36, 198-205. https://doi.org/10.4491/KSEE.2014.36.3.198
  16. Smiciklas, I., Dimovic, S., Plecas, I., 2007, Removal of $Cs^{1+},\;Sr^{2+}\;and\;Co^{2+}$ from aqueous solutions by adsorption on natural clinoptilolite, Appl. Clay Sci., 35, 139-144. https://doi.org/10.1016/j.clay.2006.08.004
  17. Tanaka, H., Fujii, A., 2009, Effect of strring on the dissolution of coal fly ash and synthesis of pure-form Na-A and -X zeolies by two-step process, Adv. Powd. Tech., 20, 473-379.
  18. Treacy, M. M. J., Higgins, J. B., 2001, Collection of simulated XRD powder patterns for zeolites, Elsevier, Amsterdam.
  19. Wang, S., Wu, H., 2006, Environmental-benign utilisation of fly ash as low-cost adsorbents, J. Hazard. Mater., 136, 482-501.
  20. Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., Xi, Y. Q., 2015, A Comprehensive review on the applications of coal fly ash, Earth Sci. Rev., 141, 105-121. https://doi.org/10.1016/j.earscirev.2014.11.016