• 제목/요약/키워드: proteomic

검색결과 502건 처리시간 0.026초

The Expression of Galectin-3, a Beta-Galactoside Binding Protein, in Dendritic Cells

  • Kim, Mi-Hyoung;Joo, Hong-Gu
    • IMMUNE NETWORK
    • /
    • 제5권2호
    • /
    • pp.105-109
    • /
    • 2005
  • Background: Dendritic cells (DCs) are the most potent APCs (antigen-presenting cells) and playa critical role in immune responses. Galectin-3 is a biological lectin with a beta-galactoside binding affinity. Recently, proteomic analysis revealed the presence of galectin-3 in the exosome of mature DCs. However, the expression and function of galectin-3 in DCs remains unclear yet. Methods: We used bone marrow-derived DCs of mouse and showed the expression of galectin-3 in DCs by using flow cytometry analysis and Western blot analysis. Results: Galectin-3 was determined as single band of 35 kDa in Western blot analysis. Flow cytometry analysis showed the major growth factor for DCs, granulocyte-macrophage colony stimulating factor (GM-CSF) and maturing agents, anti-CD40 monoclonal antibody (mAb) and lipopolysaccharide (LPS) consistently increased the intracellular expression of galectin-3 in DCs compared to medium alone. In addition, DCs treated with maturing agents did marginally express galectin-3 on their surface. Conclusion: This study suggests that galectin-3 in DCs may be regulated by critical factors for DC function.

Proteomic Approach Analysis of Mammary Membrane Proteins Expression Profiles in Holstein Cows

  • Yang, Yong-xin;Cao, Sui-zhong;Zhang, Yong;Zhao, Xing-xu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권6호
    • /
    • pp.885-892
    • /
    • 2009
  • To investigate host defense mechanisms for protecting the mammary gland from mastitis infection, the membrane fraction of mammary tissues from Holstein cows was purified by differential velocity centrifugation, and then the sodium dodecyl sulfate-polyacrylamid gel electrophoresis (SDS-PAGE) separated proteins were identified by ion trap mass spectrometer equipped with a Surveyor high performance liquid chromatography (HPLC) system. A total of 183 proteins were identified. Bioinformatics software was applied to analyse physicochemical characteristics of the identified proteins and to predict biochemical function. These data may provide valuable information to investigate the mechanisms of mammary gland milk secretion and infectious disease, and enable a clear identification of proteins and potential protein targets for therapies.

Exploring cancer genomic data from the cancer genome atlas project

  • Lee, Ju-Seog
    • BMB Reports
    • /
    • 제49권11호
    • /
    • pp.607-611
    • /
    • 2016
  • The Cancer Genome Atlas (TCGA) has compiled genomic, epigenomic, and proteomic data from more than 10,000 samples derived from 33 types of cancer, aiming to improve our understanding of the molecular basis of cancer development. Availability of these genome-wide information provides an unprecedented opportunity for uncovering new key regulators of signaling pathways or new roles of pre-existing members in pathways. To take advantage of the advancement, it will be necessary to learn systematic approaches that can help to uncover novel genes reflecting genetic alterations, prognosis, or response to treatments. This minireview describes the updated status of TCGA project and explains how to use TCGA data.

Proteomic Identification of Differentially Expressed Proteins in Arabidopsis Mutant ntm1-D with Disturbed Cell Division

  • Lee, Kyung Hyeon;Kim, Youn-Sung;Park, Chung-Mo;Kim, Hie-Joon
    • Molecules and Cells
    • /
    • 제25권1호
    • /
    • pp.70-77
    • /
    • 2008
  • Proteome analysis was performed to identify proteins differentially expressed in an Arabidopsis mutant, ntm1-D. In this mutant the NAC transcription factor NTM1 is constitutively expressed and the resultant phenotypic changes include dwarfism, serrated leaves, and altered floral structures, probably due to reduced cell division. Marked elevation of proteins mediating environmental stress responses, including annexin, vegetative storage proteins, beta-glucosidase homolog 1, and glutathione transferases was observed. Overexpression of annexin was confirmed by RT-PCR and Western blotting. These observations suggest that the reduced growth observed in the ntm1-D mutant is caused by enhancement of its stress responses, possibly resulting in a cost in fitness.

Proteomic Analysis of Circadian Clock Mutant Mice

  • Lee Joon-Woo;Kim Han-Gyu;Bae Kiho
    • 대한의생명과학회지
    • /
    • 제11권4호
    • /
    • pp.493-501
    • /
    • 2005
  • Circadian rhythms, time on a scale of about 24 hours, are present in a number of organisms including animals, plants, and bacteria. The control of the biochemical, physiological and behavioral processes is regulated by endogenous clocks in the suprachiasmatic nucleus (SCN). At the core of this timing mechanism is molecular machinery that are present both in the brain and in the peripheral tissues throughout the body, and even in a single cultured cell. In this study, we performed two-dimensional gel electrophoresis to figure out any correlation between protein expression patterns and the requirement of two canonical clock proteins, either mPER1 or mPER2, by comparing global protein expression profiles in livers from wildtype or mPer1/mPer2 double mutant mice. We could identify several differentially expressed protein candidates with respect to time and genotypes. Further analysis of these candidate proteins in detail in vivo will lead us to the better understanding of how circadian clock functions in mammals.

  • PDF

Post-Translational Modification of Proteins in Toxicological Research: Focus on Lysine Acylation

  • Lee, Sangkyu
    • Toxicological Research
    • /
    • 제29권2호
    • /
    • pp.81-86
    • /
    • 2013
  • Toxicoproteomics integrates the proteomic knowledge into toxicology by enabling protein quantification in biofluids and tissues, thus taking toxicological research to the next level. Post-translational modification (PTM) alters the three-dimensional (3D) structure of proteins by covalently binding small molecules to them and therefore represents a major protein function diversification mechanism. Because of the crucial roles PTM plays in biological systems, the identification of novel PTMs and study of the role of PTMs are gaining much attention in proteomics research. Of the 300 known PTMs, protein acylation, including lysine formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, and crotonylation, regulates the crucial functions of many eukaryotic proteins involved in cellular metabolism, cell cycle, aging, growth, angiogenesis, and cancer. Here, I reviewed recent studies regarding novel types of lysine acylation, their biological functions, and their applicationsin toxicoproteomics research.

A Proteomic Approach to Study msDNA Function in Escherichia coli

  • Jeong, Mi-Ae;Lim, Dongbin
    • Journal of Microbiology
    • /
    • 제42권3호
    • /
    • pp.200-204
    • /
    • 2004
  • Retron is a prokaryotic genetic element that produces multicopy single-stranded DNA covalently linked to RNA (msDNA) by a reverse transcriptase. It was found that cells producing a large amount of msDNA, rather than those that did not, showed a higher rate of mutation. In order to understand the molecular mechanism connecting msDNA production to the high mutation rate the protein patterns were compared by two dimensional gel electrophoresis. Ten proteins were found to be differentially expressed at levels more than three fold greater in cells with than without msDNA, nine of which were identified by MALDI TOF MS. Eight of the nine identified proteins were repressed in msDNA-producing cells and, surprisingly, most were proteins functioning in the dissimilation of various carbon sources. One protein was induced four fold greater in the msDNA producing cells and was identified as a 30S ribosomal protein S2 involved in the regulation of translation. The molecular mechanism underlying the elevated mutation in msDNA-producing cell still remains elusive.

Evaluation of proteomic strategies for analyzing ubiquitinated proteins

  • Peng, Jun Min
    • BMB Reports
    • /
    • 제41권3호
    • /
    • pp.177-183
    • /
    • 2008
  • Ubiquitin is an essential, highly-conserved small regulatory protein in eukaryotic cells. It covalently modifies a wide variety of targeted proteins in the forms of monomer and polymers, altering the conformation and binding properties of the proteins and thus regulating proteasomal delivery, protein activities and localization. Mass spectrometry has emerged as an indispensable tool for in-depth characterization of protein ubiquitination. Ubiquitinated proteins in cell lysates are usually enriched by affinity chromatography and subsequently analyzed by mass spectrometry for identification and quantification. Ubiquitin-conjugated amino acid residues can be determined by unique mass shift caused by the modification. Moreover, the complex structure of polyubiquitin chains on substrates can be dissected by bottom-up and middle-down mass spectrometric approaches, revealing potential novel functions of polyubiquitin linkages. Here I review the advances and caveats of these strategies, emphasizing caution in the validation of ubiquitinated proteins and in the interpretation of raw data.

Nitrosative protein tyrosine modifications: biochemistry and functional significance

  • Yeo, Woon-Seok;Lee, Soo-Jae;Lee, Jung-Rok;Kim, Kwang-Pyo
    • BMB Reports
    • /
    • 제41권3호
    • /
    • pp.194-203
    • /
    • 2008
  • Nitrosative modifications regulate cellular signal transduction and pathogenesis of inflammatory responses and neuro-degenerative diseases. Protein tyrosine nitration is a biomarker of oxidative stress and also influences protein structure and function. Recent advances in mass spectrometry have made it possible to identify modified proteins and specific modified amino acid residues. For analysis of nitrated peptides with low yields or only a subset of peptides, affinity 'tags' can be bait for 'fishing out' target analytes from complex mixtures. These tagged peptides are then extracted to a solid phase, followed by mass analysis. In this review, we focus on protein tyrosine modifications caused by nitrosative stresses and proteomic methods for selective enrichment and identification of nitrosative protein modifications.