DOI QR코드

DOI QR Code

Exploring cancer genomic data from the cancer genome atlas project

  • Lee, Ju-Seog (Department of Systems Biology, The University of Texas MD Anderson Cancer Center)
  • Received : 2016.08.16
  • Published : 2016.11.30

Abstract

The Cancer Genome Atlas (TCGA) has compiled genomic, epigenomic, and proteomic data from more than 10,000 samples derived from 33 types of cancer, aiming to improve our understanding of the molecular basis of cancer development. Availability of these genome-wide information provides an unprecedented opportunity for uncovering new key regulators of signaling pathways or new roles of pre-existing members in pathways. To take advantage of the advancement, it will be necessary to learn systematic approaches that can help to uncover novel genes reflecting genetic alterations, prognosis, or response to treatments. This minireview describes the updated status of TCGA project and explains how to use TCGA data.

Keywords

References

  1. Consortium IHGS (2004) Finishing the euchromatic sequence of the human genome. Nature 431, 931-945 https://doi.org/10.1038/nature03001
  2. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921 https://doi.org/10.1038/35057062
  3. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291, 1304-1351 https://doi.org/10.1126/science.1058040
  4. DeNicola GM, Chen PH, Mullarky E et al (2015) NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet 47, 1475-1481 https://doi.org/10.1038/ng.3421
  5. Park YY, Kim K, Kim SB et al (2012) Reconstruction of nuclear receptor network reveals that NR2E3 is a novel upstream regulator of ESR1 in breast cancer. EMBO Mol Med 4, 52-67 https://doi.org/10.1002/emmm.201100187
  6. Saha SK, Parachoniak CA, Ghanta KS et al (2014) Mutant IDH inhibits HNF-4alpha to block hepatocyte differentiation and promote biliary cancer. Nature 513, 110-114 https://doi.org/10.1038/nature13441
  7. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061-1068 https://doi.org/10.1038/nature07385
  8. International Cancer Genome Consortium (2010) International network of cancer genome projects. Nature 464, 993-998 https://doi.org/10.1038/nature08987
  9. Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615 https://doi.org/10.1038/nature10166
  10. Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519-525 https://doi.org/10.1038/nature11404
  11. Cancer Genome Atlas Research Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337 https://doi.org/10.1038/nature11252
  12. Han L, Diao L, Yu S et al (2015) The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers. Cancer Cell 28, 515-528 https://doi.org/10.1016/j.ccell.2015.08.013
  13. Yates LA, Norbury CJ and Gilbert RJ (2013) The long and short of microRNA. Cell 153, 516-519 https://doi.org/10.1016/j.cell.2013.04.003
  14. Spurrier B, Ramalingam S and Nishizuka S (2008) Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc 3, 1796-1808 https://doi.org/10.1038/nprot.2008.179
  15. Gutman DA, Cobb J, Somanna D et al (2013) Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. J Am Med Inform Assoc 20, 1091-1098 https://doi.org/10.1136/amiajnl-2012-001469
  16. Clark K, Vendt B, Smith K et al (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26, 1045-1057 https://doi.org/10.1007/s10278-013-9622-7
  17. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2, 401-404 https://doi.org/10.1158/2159-8290.CD-12-0095
  18. Goswami CP and Nakshatri H (2014) PROGgeneV2: enhancements on the existing database. BMC Cancer 14, 970 https://doi.org/10.1186/1471-2407-14-970
  19. Koch A, De Meyer T, Jeschke J and Van Criekinge W (2015) MEXPRESS: visualizing expression, DNA methyla-tion and clinical TCGA data. BMC Genomics 16, 636 https://doi.org/10.1186/s12864-015-1847-z
  20. Li J, Lu Y, Akbani R et al (2013) TCPA: a resource for cancer functional proteomics data. Nat Methods 10, 1046-1047

Cited by

  1. What is the potential of nanolock– and nanocross–nanopore technology in cancer diagnosis? pp.1744-8352, 2017, https://doi.org/10.1080/14737159.2018.1410060
  2. Five Novel Oncogenic Signatures Could Be Utilized as AFP-Related Diagnostic Biomarkers for Hepatocellular Carcinoma Based on Next-Generation Sequencing vol.63, pp.4, 2018, https://doi.org/10.1007/s10620-018-4961-3
  3. Clinical significance of APOB inactivation in hepatocellular carcinoma vol.50, pp.11, 2018, https://doi.org/10.1038/s12276-018-0174-2
  4. A pan-cancer study of the transcriptional regulation of uricogenesis in human tumours: pathological and pharmacological correlates vol.38, pp.5, 2018, https://doi.org/10.1042/BSR20171716
  5. Silencing non-SMC chromosome-associated polypeptide G inhibits proliferation and induces apoptosis in hepatocellular carcinoma cells pp.1205-7541, 2018, https://doi.org/10.1139/cjpp-2018-0195
  6. Oncoyeasti: a web-based application to translate data obtained from Saccharomyces cerevisiae high-throughput drug screens into cancer therapeutics vol.7, pp.2046-1402, 2018, https://doi.org/10.12688/f1000research.15168.1
  7. Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-04179-8
  8. Multi-platform analysis of methylation-regulated genes in human lung adenocarcinoma vol.82, pp.1, 2019, https://doi.org/10.1080/15287394.2018.1551645