• Title/Summary/Keyword: The cancer genome atlas

Search Result 42, Processing Time 0.024 seconds

Exploring cancer genomic data from the cancer genome atlas project

  • Lee, Ju-Seog
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.607-611
    • /
    • 2016
  • The Cancer Genome Atlas (TCGA) has compiled genomic, epigenomic, and proteomic data from more than 10,000 samples derived from 33 types of cancer, aiming to improve our understanding of the molecular basis of cancer development. Availability of these genome-wide information provides an unprecedented opportunity for uncovering new key regulators of signaling pathways or new roles of pre-existing members in pathways. To take advantage of the advancement, it will be necessary to learn systematic approaches that can help to uncover novel genes reflecting genetic alterations, prognosis, or response to treatments. This minireview describes the updated status of TCGA project and explains how to use TCGA data.

Regulation of Pharmacogene Expression by microRNA in The Cancer Genome Atlas (TCGA) Research Network

  • Han, Nayoung;Song, Yun-Kyoung;Burckart, Gilbert J.;Ji, Eunhee;Kim, In-Wha;Oh, Jung Mi
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.482-489
    • /
    • 2017
  • Individual differences in drug responses are associated with genetic and epigenetic variability of pharmacogene expression. We aimed to identify the relevant miRNAs which regulate pharmacogenes associated with drug responses. The miRNA and mRNA expression profiles derived from data for normal and solid tumor tissues in The Cancer Genome Atlas (TCGA) Research Network. Predicted miRNAs targeted to pharmacogenes were identified using publicly available databases. A total of 95 pharmacogenes were selected from cholangiocarcinoma and colon adenocarcinoma, as well as kidney renal clear cell, liver hepatocellular, and lung squamous cell carcinomas. Through the integration analyses of miRNA and mRNA, 35 miRNAs were found to negatively correlate with mRNA expression levels of 16 pharmacogenes in normal bile duct, liver, colon, and lung tissues (p<0.05). Additionally, 36 miRNAs were related to differential expression of 32 pharmacogene mRNAs in those normal and tumorigenic tissues (p<0.05). These results indicate that changes in expression levels of miRNAs targeted to pharmacogenes in normal and tumor tissues may play a role in determining individual variations in drug response.

Application of Data Mining for Biomedical Data Processing (바이오메디컬 데이터 처리를 위한 데이터마이닝 활용)

  • Shon, Ho-Sun;Kim, Kyoung-Ok;Cha, Eun-Jong;Kim, Kyung-Ah
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1236-1241
    • /
    • 2016
  • Cancer has been the most frequent in Korea, and pathogenesis and progression of cancer have been known to be occurred through various causes and stages. Recently, the research of chromosomal and genetic disorder and the research about prognostic factor to predict occurrence, recurrence and progress of chromosomal and genetic disorder have been performed actively. In this paper, we analyzed DNA methylation data downloaded from TCGA (The Cancer Genome Atlas), open database, to research bladder cancer which is the most frequent among urinary system cancers. Using three level of methylation data which had the most preprocessing, 59 candidate CpG island were extracted from 480,000 CpG island, and then we analyzed extracted CpG island applying data mining technique. As a result, cg12840719 CpG island were analyzed significant, and in Cox's regression we can find the CpG island with high relative risk in comparison with other CpG island. Shown in the result of classification analysis, the CpG island which have high correlation with bladder cancer are cg03146993, cg07323648, cg12840719, cg14676825 and classification accuracy is about 76%. Also we found out that positive predictive value, the probability which predicts cancer in case of cancer was 72.4%. Through the verification of candidate CpG island from the result, we can utilize this method for diagnosing and treating cancer.

In silico Identification of SFRP1 as a Hypermethylated Gene in Colorectal Cancers

  • Kim, Jongbum;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.171-180
    • /
    • 2014
  • Aberrant DNA methylation, as an epigenetic marker of cancer, influences tumor development and progression. We downloaded publicly available DNA methylation and gene expression datasets of matched cancer and normal pairs from the Cancer Genome Atlas Data Portal and performed a systematic computational analysis. This study has three aims to screen genes that show hypermethylation and downregulated patterns in colorectal cancers, to identify differentially methylated regions in one of these genes, SFRP1, and to test whether the SFRP genes affect survival or not. Our results show that 31 hypermethylated genes had a negative correlation with gene expression. Among them, SFRP1 had a differentially methylated pattern at each methylation site. We also show that SFRP1 may be a potential biomarker for colorectal cancer survival.

Classification of Genes Based on Age-Related Differential Expression in Breast Cancer

  • Lee, Gunhee;Lee, Minho
    • Genomics & Informatics
    • /
    • v.15 no.4
    • /
    • pp.156-161
    • /
    • 2017
  • Transcriptome analysis has been widely used to make biomarker panels to diagnose cancers. In breast cancer, the age of the patient has been known to be associated with clinical features. As clinical transcriptome data have accumulated significantly, we classified all human genes based on age-specific differential expression between normal and breast cancer cells using public data. We retrieved the values for gene expression levels in breast cancer and matched normal cells from The Cancer Genome Atlas. We divided genes into two classes by paired t test without considering age in the first classification. We carried out a secondary classification of genes for each class into eight groups, based on the patterns of the p-values, which were calculated for each of the three age groups we defined. Through this two-step classification, gene expression was eventually grouped into 16 classes. We showed that this classification method could be applied to establish a more accurate prediction model to diagnose breast cancer by comparing the performance of prediction models with different combinations of genes. We expect that our scheme of classification could be used for other types of cancer data.

Classification of Colon Cancer Patients Based on the Methylation Patterns of Promoters

  • Choi, Wonyoung;Lee, Jungwoo;Lee, Jin-Young;Lee, Sun-Min;Kim, Da-Won;Kim, Young-Joon
    • Genomics & Informatics
    • /
    • v.14 no.2
    • /
    • pp.46-52
    • /
    • 2016
  • Diverse somatic mutations have been reported to serve as cancer drivers. Recently, it has also been reported that epigenetic regulation is closely related to cancer development. However, the effect of epigenetic changes on cancer is still elusive. In this study, we analyzed DNA methylation data on colon cancer taken from The Caner Genome Atlas. We found that several promoters were significantly hypermethylated in colon cancer patients. Through clustering analysis of differentially methylated DNA regions, we were able to define subgroups of patients and observed clinical features associated with each subgroup. In addition, we analyzed the functional ontology of aberrantly methylated genes and identified the G-protein-coupled receptor signaling pathway as one of the major pathways affected epigenetically. In conclusion, our analysis shows the possibility of characterizing the clinical features of colon cancer subgroups based on DNA methylation patterns and provides lists of important genes and pathways possibly involved in colon cancer development.

Molecular Pathology of Gastric Cancer

  • Kim, Moonsik;Seo, An Na
    • Journal of Gastric Cancer
    • /
    • v.22 no.4
    • /
    • pp.273-305
    • /
    • 2022
  • Gastric cancer (GC) is one of the most common lethal malignant neoplasms worldwide, with limited treatment options for both locally advanced and/or metastatic conditions, resulting in a dismal prognosis. Although the widely used morphological classifications may be helpful for endoscopic or surgical treatment choices, they are still insufficient to guide precise and/or personalized therapy for individual patients. Recent advances in genomic technology and high-throughput analysis may improve the understanding of molecular pathways associated with GC pathogenesis and aid in the classification of GC at the molecular level. Advances in next-generation sequencing have enabled the identification of several genetic alterations through single experiments. Thus, understanding the driver alterations involved in gastric carcinogenesis has become increasingly important because it can aid in the discovery of potential biomarkers and therapeutic targets. In this article, we review the molecular classifications of GC, focusing on The Cancer Genome Atlas (TCGA) classification. We further describe the currently available biomarker-targeted therapies and potential biomarker-guided therapies. This review will help clinicians by providing an inclusive understanding of the molecular pathology of GC and may assist in selecting the best treatment approaches for patients with GC.

Somatic Mutaome Profile in Human Cancer Tissues

  • Kim, Nayoung;Hong, Yourae;Kwon, Doyoung;Yoon, Sukjoon
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.239-244
    • /
    • 2013
  • Somatic mutation is a major cause of cancer progression and varied responses of tumors against anticancer agents. Thus, we must obtain and characterize genome-wide mutational profiles in individual cancer subtypes. The Cancer Genome Atlas database includes large amounts of sequencing and omics data generated from diverse human cancer tissues. In the present study, we integrated and analyzed the exome sequencing data from ~3,000 tissue samples and summarized the major mutant genes in each of the diverse cancer subtypes and stages. Mutations were observed in most human genes (~23,000 genes) with low frequency from an analysis of 11 major cancer subtypes. The majority of tissue samples harbored 20-80 different mutant genes, on average. Lung cancer samples showed a greater number of mutations in diverse genes than other cancer subtypes. Only a few genes were mutated with over 5% frequency in tissue samples. Interestingly, mutation frequency was generally similar between non-metastatic and metastastic samples in most cancer subtypes. Among the 12 major mutations, the TP53, USH2A, TTN, and MUC16 genes were found to be frequent in most cancer types, while BRAF, FRG1B, PBRM1, and VHL showed lineage-specific mutation patterns. The present study provides a useful resource to understand the broad spectrum of mutation frequencies in various cancer types.

Odorant receptors in cancer

  • Chung, Chan;Cho, Hee Jin;Lee, ChaeEun;Koo, JaeHyung
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.72-80
    • /
    • 2022
  • Odorant receptors (ORs), the largest subfamily of G protein-coupled receptors, detect odorants in the nose. In addition, ORs were recently shown to be expressed in many nonolfactory tissues and cells, indicating that these receptors have physiological and pathophysiological roles beyond olfaction. Many ORs are expressed by tumor cells and tissues, suggesting that they may be associated with cancer progression or may be cancer biomarkers. This review describes OR expression in various types of cancer and the association of these receptors with various types of signaling mechanisms. In addition, the clinical relevance and significance of the levels of OR expression were evaluated. Namely, levels of OR expression in cancer were analyzed based on RNA-sequencing data reported in the Cancer Genome Atlas; OR expression patterns were visualized using t-distributed stochastic neighbor embedding (t-SNE); and the associations between patient survival and levels of OR expression were analyzed. These analyses of the relationships between patient survival and expression patterns obtained from an open mRNA database in cancer patients indicate that ORs may be cancer biomarkers and therapeutic targets.

Expressional Subpopulation of Cancers Determined by G64, a Co-regulated Module

  • Min, Jae-Woong;Choi, Sun Shim
    • Genomics & Informatics
    • /
    • v.13 no.4
    • /
    • pp.132-136
    • /
    • 2015
  • Studies of cancer heterogeneity have received considerable attention recently, because the presence or absence of resistant sub-clones may determine whether or not certain therapeutic treatments are effective. Previously, we have reported G64, a co-regulated gene module composed of 64 different genes, can differentiate tumor intra- or inter-subpopulations in lung adenocarcinomas (LADCs). Here, we investigated whether the G64 module genes were also expressed distinctively in different subpopulations of other cancers. RNA sequencing-based transcriptome data derived from 22 cancers, except LADC, were downloaded from The Cancer Genome Atlas (TCGA). Interestingly, the 22 cancers also expressed the G64 genes in a correlated manner, as observed previously in an LADC study. Considering that gene expression levels were continuous among different tumor samples, tumor subpopulations were investigated using extreme expressional ranges of G64-i.e., tumor subpopulation with the lowest 15% of G64 expression, tumor subpopulation with the highest 15% of G64 expression, and tumor subpopulation with intermediate expression. In each of the 22 cancers, we examined whether patient survival was different among the three different subgroups and found that G64 could differentiate tumor subpopulations in six other cancers, including sarcoma, kidney, brain, liver, and esophageal cancers.