References
- Varshavsky, A. (2005) Regulated protein degradation. Trends. Biochem. Sci. 30, 283-286. https://doi.org/10.1016/j.tibs.2005.04.005
- Weissman, A. M. (2001) Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell. Biol. 2, 169-178. https://doi.org/10.1038/35056563
- Pickart, C. M. (2001) Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503-533. https://doi.org/10.1146/annurev.biochem.70.1.503
- Ciechanover, A. and Ben-Saadon, R. (2004) N-terminal ubiquitination: more protein substrates join in. Trends. Cell. Biol. 14, 103-106. https://doi.org/10.1016/j.tcb.2004.01.004
- Cadwell, K. and Coscoy, L. (2005) Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309, 127-130. https://doi.org/10.1126/science.1110340
- Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D. and Gygi, S. P. (2003) A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921-926. https://doi.org/10.1038/nbt849
- Wilkinson, K. D. (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Seminars in Cell & Developmental Biology 11, 141-148. https://doi.org/10.1006/scdb.2000.0164
- Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K. and Bernards, R. (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773-786. https://doi.org/10.1016/j.cell.2005.11.007
- Semple, C. A. (2003) The comparative proteomics of ubiquitination in mouse. Genome. Res. 13, 1389-1394. https://doi.org/10.1101/gr.980303
- Pickart, C. M. and Fushman, D. (2004) Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610-616. https://doi.org/10.1016/j.cbpa.2004.09.009
- Hicke, L., Schubert, H. L. and Hill, C. P. (2005) Ubiquitin-binding domains. Nat. Rev. Mol. Cell. Biol. 6, 610-621. https://doi.org/10.1038/nrm1701
- Harper, J. W. and Schulman, B. A. (2006) Structural complexity in ubiquitin recognition. Cell 124, 1133-1136. https://doi.org/10.1016/j.cell.2006.03.009
- Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198-207. https://doi.org/10.1038/nature01511
- Yates, J. R., 3rd (2004) Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct. 33, 297-316. https://doi.org/10.1146/annurev.biophys.33.111502.082538
- Marotti, L. A., Jr., Newitt, R., Wang, Y., Aebersold, R. and Dohlman, H. G. (2002) Direct identification of a G protein ubiquitination site by mass spectrometry. Biochemistry 41, 5067-5074. https://doi.org/10.1021/bi015940q
- Peng, J. and Gygi, S. P. (2001) Proteomics: the move to mixtures. J. Mass. Spectrom. 36, 1083-1091. https://doi.org/10.1002/jms.229
- Love, K. R., Catic, A., Schlieker, C. and Ploegh, H. L. (2007) Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat. Chem. Biol. 3, 697-705. https://doi.org/10.1038/nchembio.2007.43
- Kessler, B. M. (2006) Putting proteomics on target: activity-based profiling of ubiquitin and ubiquitin-like processing enzymes. Expert Review of Proteomics 3, 213-221. https://doi.org/10.1586/14789450.3.2.213
- Kirkpatrick, D. S., Denison, C. and Gygi, S. P. (2005) Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat. Cell. Biol. 7, 750-757. https://doi.org/10.1038/ncb0805-750
- Xu, P. and Peng, J. (2006) Dissecting the ubiquitin pathway by mass spectrometry. Biochim. Biophys. Acta. 1764, 1940-1947. https://doi.org/10.1016/j.bbapap.2006.09.004
- Tomlinson, E., Palaniyappan, N., Tooth, D. and Layfield, R. (2007) Methods for the purification of ubiquitinated proteins. Proteomics 7, 1016-1022. https://doi.org/10.1002/pmic.200601008
- Wang, X., Guerrero, C., Kaiser, P. and Huang, L. (2007) Proteomics of proteasome complexes and ubiquitinated proteins. Expert Review of Proteomics 4, 649-665. https://doi.org/10.1586/14789450.4.5.649
- Peng, J. and Cheng, D. (2005) Proteomic analysis of ubiquitin conjugates in yeast. Methods. Enzymol. 399, 367-381. https://doi.org/10.1016/S0076-6879(05)99025-3
- Tagwerker, C., Flick, K., Cui, M., Guerrero, C., Dou, Y., Auer, B., Baldi, P., Huang, L. and Kaiser, P. (2006) A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivo cross-linking. Mol. Cell. Proteomics. 5, 737-748. https://doi.org/10.1074/mcp.M500368-MCP200
- Jeon, H. B., Choi, E. S., Yoon, J. H., Hwang, J. H., Chang, J. W., Lee, E. K., Choi, H. W., Park, Z. Y. and Yoo, Y. J. (2007) A proteomics approach to identify the ubiquitinated proteins in mouse heart. Biochemical and Biophysical Research Communications 357, 731-736. https://doi.org/10.1016/j.bbrc.2007.04.015
- Matsumoto, M., Hatakeyama, S., Oyamada, K., Oda, Y., Nishimura, T. and Nakayama, K. I. (2005) Large-scale analysis of the human ubiquitin-related proteome. Proteomics 5, 4145-4151. https://doi.org/10.1002/pmic.200401280
- Vasilescu, J., Smith, J. C., Ethier, M. and Figeys, D. (2005) Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by immunoaffinity purification and mass spectrometry. J. Proteome. Res. 4, 2192-2200. https://doi.org/10.1021/pr050265i
- Layfield, R., Tooth, D., Landon, M., Dawson, S., Mayer, J. and Alban, A. (2001) Purification of poly-ubiquitinated proteins by S5a-affinity chromatography. Proteomics 1, 773-777. https://doi.org/10.1002/1615-9861(200106)1:6<773::AID-PROT773>3.0.CO;2-0
- Weekes, J., Morrison, K., Mullen, A., Wait, R., Barton, P. and Dunn, M. J. (2003) Hyperubiquitination of proteins in dilated cardiomyopathy. Proteomics 3, 208-216. https://doi.org/10.1002/pmic.200390029
- Maor, R., Jones, A., Nuhse, T. S., Studholme, D. J., Peck, S. C. and Shirasu, K. (2007) Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol. Cell. Proteomics. 6, 601-610. https://doi.org/10.1074/mcp.M600408-MCP200
- Bennett, E. J., Shaler, T. A., Woodman, B., Ryu, K. Y., Zaitseva, T. S., Becker, C. H., Bates, G. P., Schulman, H. and Kopito, R. R. (2007) Global changes to the ubiquitin system in Huntington's disease. Nature 448, 704-708. https://doi.org/10.1038/nature06022
- Mayor, T., Lipford, J. R., Graumann, J., Smith, G. T. and Deshaies, R. J. (2005) Analysis of polyubiquitin conjugates reveals that the Rpn10 substrate receptor contributes to the turnover of multiple proteasome targets. Mol. Cell. Proteomics. 4, 741-751. https://doi.org/10.1074/mcp.M400220-MCP200
- Seyfried, N. T., Xu, P., Duong, D. M., Cheng, D., Hanfelt, J. and Peng, J. (2008) A systematic approach to validating ubiquitinated proteome. Anal. Chem. Under. Revision https://doi.org/10.1021/ac702516a
- Hitchcock, A. L., Auld, K., Gygi, S. P. and Silver, P. A. (2003) A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc. Natl. Acad. Sci. U. S. A. 100, 12735-12740. https://doi.org/10.1073/pnas.2135500100
- Mayor, T., Graumann, J., Bryan, J., MacCoss, M. J. and Deshaies, R. J. (2007) Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol. Cell. Proteomics. 6, 1885-1895 https://doi.org/10.1074/mcp.M700264-MCP200
- Wang, M., Cheng, D., Peng, J. and Pickart, C. M. (2006) Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. The EMBO Journal 25, 1710-1719. https://doi.org/10.1038/sj.emboj.7601061
- Warren, M. R., Parker, C. E., Mocanu, V., Klapper, D. and Borchers, C. H. (2005) Electrospray ionization tandem mass spectrometry of model peptides reveals diagnostic fragment ions for protein ubiquitination. Rapid. Commun. Mass. Spectrom. 19, 429-437. https://doi.org/10.1002/rcm.1798
- Xu, P., Cheng, D., Duong, D. M., Rush, J., Roelofs, J., Finley, D. and Peng, J. (2006) A proteomic strategy for quantifying polyubiquitin chain topologies. Israel J. Chem. 46, 171-182. https://doi.org/10.1560/1JVL-J4EE-FVW4-MXRE
- Denis, N. J., Vasilescu, J., Lambert, J. P., Smith, J. C. and Figeys, D. (2007) Tryptic digestion of ubiquitin standards reveals an improved strategy for identifying ubiquitinated proteins by mass spectrometry. Proteomics 7, 868-874. https://doi.org/10.1002/pmic.200600410
- Huang, F., Kirkpatrick, D., Jiang, X., Gygi, S. and Sorkin, A. (2006) Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol. Cell. 21, 737-748. https://doi.org/10.1016/j.molcel.2006.02.018
- Kirkpatrick, D. S., Hathaway, N. A., Hanna, J., Elsasser, S., Rush, J., Finley, D., King, R. W. and Gygi, S. P. (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nature. Cell. Biology. 8, 700-710. https://doi.org/10.1038/ncb1436
- Crosas, B., Hanna, J., Kirkpatrick, D. S., Zhang, D. P., Tone, Y., Hathaway, N. A., Buecker, C., Leggett, D. S., Schmidt, M., King, R. W., Gygi, S. P. and Finley, D. (2006) Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127, 1401-1413. https://doi.org/10.1016/j.cell.2006.09.051
- Tan, J. M., Wong, E. S., Kirkpatrick, D. S., Pletnikova, O., Ko, H. S., Tay, S. P., Ho, M. W., Troncoso, J., Gygi, S. P., Lee, M. K., Dawson, V. L., Dawson, T. M. and Lim, K. L. (2008) Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Human Molecular Genetics 17, 431-439. https://doi.org/10.1093/hmg/ddm320
- Kumar, K. G., Barriere, H., Carbone, C. J., Liu, J., Swaminathan, G., Xu, P., Li, Y., Baker, D. P., Peng, J., Lukacs, G. L. and Fuchs, S. Y. (2007) Site-specific ubiquitination exposes a linear motif to promote interferon-alpha receptor endocytosis. The Journal of Cell Biology 179, 935-950. https://doi.org/10.1083/jcb.200706034
- Wooten, M. W., Geetha, T., Babu, J. R., Seibenhener, M. L., Peng, J., Cox, N., Diaz-Meco, M. T. and Moscat, J. (2008) Essential Role of Sequestosome 1/p62 in Regulating Accumulation of Lys63-ubiquitinated Proteins. The Journal of Biological Chemistry 283, 6783-6789. https://doi.org/10.1074/jbc.M709496200
- Ong, S. E. and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol. 1, 252-262. https://doi.org/10.1038/nchembio736
- Kim, H. T., Kim, K. P., Lledias, F., Kisselev, A. F., Scaglione, K. M., Skowyra, D., Gygi, S. P. and Goldberg, A. L. (2007) Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J. Biol. Chem. 282, 17375-17386. https://doi.org/10.1074/jbc.M609659200
- Wu, S. L., Kim, J., Bandle, R. W., Liotta, L., Petricoin, E. and Karger, B. L. (2006) Dynamic profiling of the post-translational modifications and interaction partners of epidermal growth factor receptor signaling after stimulation by epidermal growth factor using Extended Range Proteomic Analysis (ERPA). Mol. Cell. Proteomics. 5, 1610-1627. https://doi.org/10.1074/mcp.M600105-MCP200
- Garciaa, B. A., Siutib, N., Thomasb, C. E., Mizzena, C. A. and Kelleher, N. L. (2007) Characterization of neurohistone variants and post-translational modifications by electron capture dissociation mass spectrometry. Int. J. Mass Spectr. 259, 184-196. https://doi.org/10.1016/j.ijms.2006.07.022
- Xu, P. and Peng, J. (2008) Characterization of polyubiquitin chain structure by middle-down mass spectrometry. Anal. Chem. in press
- Kerscher, O., Felberbaum, R. and Hochstrasser, M. (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell. Dev. Biol. 22, 159-180. https://doi.org/10.1146/annurev.cellbio.22.010605.093503
Cited by
- Quantitative proteomics to decipher ubiquitin signaling vol.43, pp.3, 2012, https://doi.org/10.1007/s00726-012-1286-y
- Advances in purification and separation of posttranslationally modified proteins vol.92, 2013, https://doi.org/10.1016/j.jprot.2013.05.040
- Shotgun Proteomics in Neuroscience vol.63, pp.1, 2009, https://doi.org/10.1016/j.neuron.2009.06.011
- Chemical Biology Approaches to Probe the Proteome vol.9, pp.18, 2008, https://doi.org/10.1002/cbic.200800454
- Enhanced Detection of Ubiquitin Isopeptides Using Reductive Methylation vol.24, pp.3, 2013, https://doi.org/10.1007/s13361-012-0538-0
- The requirement for proteomics to unravel stem cell regulatory mechanisms vol.226, pp.10, 2011, https://doi.org/10.1002/jcp.22610
- Proteomic Analysis of the Ubiquitin Landscape in the Drosophila Embryonic Nervous System and the Adult Photoreceptor Cells vol.10, pp.10, 2015, https://doi.org/10.1371/journal.pone.0139083
- The Drosophila melanogaster sperm proteome-II (DmSP-II) vol.73, pp.11, 2010, https://doi.org/10.1016/j.jprot.2010.09.002
- Post-translation modification of proteins; methodologies and applications in plant sciences vol.72, pp.10, 2011, https://doi.org/10.1016/j.phytochem.2011.01.029
- Sperm ubiquitination in epididymal feline semen vol.82, pp.4, 2014, https://doi.org/10.1016/j.theriogenology.2014.06.002
- Fine regulation of Saccharomyces cerevisiae MAPK pathways by post-translational modifications vol.27, pp.8, 2010, https://doi.org/10.1002/yea.1791
- Comparison of CID versus ETD based MS/MS fragmentation for the analysis of protein ubiquitination vol.20, pp.9, 2009, https://doi.org/10.1016/j.jasms.2009.04.023
- Unraveling the ubiquitin-regulated signaling networks by mass spectrometry-based proteomics vol.13, pp.3-4, 2013, https://doi.org/10.1002/pmic.201200244
- The application of targeted mass spectrometry-based strategies to the detection and localization of post-translational modifications vol.34, pp.6, 2015, https://doi.org/10.1002/mas.21421
- Ubiquitin-binding domains: Mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes vol.15, pp.5-6, 2015, https://doi.org/10.1002/pmic.201400341
- Proteomics analyses of microvesicles released by Drosophila Kc167 and S2 cells vol.11, pp.22, 2011, https://doi.org/10.1002/pmic.201000774
- Insights into the Molecular Composition of Endogenous Unanchored Polyubiquitin Chains vol.11, pp.3, 2012, https://doi.org/10.1021/pr201167n
- The Degradative Inventory of the Cell: Proteomic Insights vol.17, pp.5, 2012, https://doi.org/10.1089/ars.2011.4393
- Using Glycinylation, a Chemical Derivatization Technique, for the Quantitation of Ubiquitinated Proteins vol.85, pp.12, 2013, https://doi.org/10.1021/ac400398s
- Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system vol.41, pp.12, 2008, https://doi.org/10.5483/BMBRep.2008.41.12.852
- Ubiquitination dynamics in the early-branching eukaryoteGiardia intestinalis vol.2, pp.3, 2013, https://doi.org/10.1002/mbo3.88
- Quantitative proteomic analysis of Parkin substrates in Drosophila neurons vol.12, pp.1, 2017, https://doi.org/10.1186/s13024-017-0170-3
- Modification-specific proteomics in plant biology vol.73, pp.11, 2010, https://doi.org/10.1016/j.jprot.2010.06.002
- Identification of ubiquitin-modified lysine residues and novel phosphorylation sites on eukaryotic initiation factor 2B epsilon vol.436, pp.1, 2013, https://doi.org/10.1016/j.bbrc.2013.05.053
- Next generation functional proteomics in non-model plants: A survey on techniques and applications for the analysis of protein complexes and post-translational modifications vol.72, pp.10, 2011, https://doi.org/10.1016/j.phytochem.2011.01.003
- Affinity-based proteomic profiling: Problems and achievements vol.12, pp.4-5, 2012, https://doi.org/10.1002/pmic.201100373
- Use of Biotinylated Ubiquitin for Analysis of Rat Brain Mitochondrial Proteome and Interactome vol.13, pp.12, 2012, https://doi.org/10.3390/ijms130911593
- Proteomics approaches to fibrotic disorders vol.5, pp.S1, 2012, https://doi.org/10.1186/1755-1536-5-S1-S10
- Middle-down approach: a choice to sequence and characterize proteins/proteomes by mass spectrometry vol.9, pp.1, 2019, https://doi.org/10.1039/C8RA07200K