• 제목/요약/키워드: protein annotation

검색결과 109건 처리시간 0.022초

ORF Miner: a Web-based ORF Search Tool

  • Park, Sin-Gi;Kim, Ki-Bong
    • Genomics & Informatics
    • /
    • 제7권4호
    • /
    • pp.217-219
    • /
    • 2009
  • The primary clue for locating protein-coding regions is the open reading frame and the determination of ORFs (Open Reading Frames) is the first step toward the gene prediction, especially for prokaryotes. In this respect, we have developed a web-based ORF search tool called ORF Miner. The ORF Miner is a graphical analysis utility which determines all possible open reading frames of a selectable minimum size in an input sequence. This tool identifies all open reading frames using alternative genetic codes as well as the standard one and reports a list of ORFs with corresponding deduced amino acid sequences. The ORF Miner can be employed for sequence annotation and give a crucial clue to determination of actual protein-coding regions.

단백질 구조 및 기능 분석을 위한 FEATURE 시스템 개선 (Deciphering FEATURE for Novel Protein Data Analysis and Functional Annotation)

  • 유승학;윤성로
    • 전기전자학회논문지
    • /
    • 제13권3호
    • /
    • pp.18-23
    • /
    • 2009
  • FEATURE는 단백질 내에서 특정 기능이나 구조를 가지고 있는 site의 미세환경분포를 이용하여 다른 단백질 내에서 이와 유사한 미세환경을 가지고 있는 부분을 찾아 그 분분이 site일 확률을 수치적으로 제시해 줌으로써 사용자로 하여금 site의 존재 유무와 그 위치를 판단하는데 기준을 제공해주는 유용한 툴이다. 하지만 기존의 FEATURE에서 사용된 데이터 이외의 새로운 단백질 구조 데이터를 FEATURE에 적용하기 위해서는 FEATURE 내부의 module을 입력 데이터 구조에 맞게 수정해야 한다. 그러나 FEATURE 내부의 module 구조를 수정하는 방식이 직관적이지 않기 때문에 많은 연구자들이 FEATURE를 원활하게 사용하지 못하였다. 따라서 본 논문에서는 FEATURE의 내부 구조를 분석하고 FEATURE를 새로운 단백질 데이터에 적용하기 위한 방법을 제시한다.

  • PDF

High quality genome sequence of Treponema phagedenis KS1 isolated from bovine digital dermatitis

  • Espiritu, Hector M.;Mamuad, Lovelia L.;Jin, Su-jeong;Kim, Seon-ho;Lee, Sang-suk;Cho, Yong-il
    • Journal of Animal Science and Technology
    • /
    • 제62권6호
    • /
    • pp.948-951
    • /
    • 2020
  • Treponema phagedenis KS1, a fastidious anaerobe, was isolated from a bovine digital dermatitis (BDD)-infected dairy cattle in Chungnam, Korea. Initial data indicated that T. phagedenis KS1 exhibited putative virulent phenotypic characteristics. This study reports the whole genome assembly and annotation of T. phagedenis KS1 (KCTC14157BP) to assist in the identification of putative pathogenicity related factors. The whole genome of T. phagedenis KS1 was sequenced using PacBio RSII and Illumina HiSeqXTen platforms. The assembled T. phagedenis KS1 genome comprises 16 contigs with a total size of 3,769,422 bp and an overall guanine-cytosine (GC) content of 40.03%. Annotation revealed 3,460 protein-coding genes, as well as 49 transfer RNA- and 6 ribosomal RNA-coding genes. The results of this study provide insight into the pathogenicity of T. phagedenis KS1.

Genomic Analysis of a Freshwater Actinobacterium, "Candidatus Limnosphaera aquatica" Strain IMCC26207, Isolated from Lake Soyang

  • Kim, Suhyun;Kang, Ilnam;Cho, Jang-Cheon
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권4호
    • /
    • pp.825-833
    • /
    • 2017
  • Strain IMCC26207 was isolated from the surface layer of Lake Soyang in Korea by the dilutionto-extinction culturing method, using a liquid medium prepared with filtered and autoclaved lake water. The strain could neither be maintained in a synthetic medium other than natural freshwater medium nor grown on solid agar plates. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain IMCC26207 formed a distinct lineage in the order Acidimicrobiales of the phylum Actinobacteria. The closest relative among the previously identified bacterial taxa was "Candidatus Microthrix parvicella" with 16S rRNA gene sequence similarity of 91.7%. Here, the draft genome sequence of strain IMCC26207, a freshwater actinobacterium, is reported with the description of the genome properties and annotation summary. The draft genome consisted of 10 contigs with a total size of 3,316,799 bp and an average G+C content of 57.3%. The IMCC26207 genome was predicted to contain 2,975 protein-coding genes and 51 non-coding RNA genes, including 45 tRNA genes. Approximately 76.8% of the protein coding genes could be assigned with a specific function. Annotation of the IMCC26207 genome showed several traits of adaptation to living in oligotrophic freshwater environments, such as phosphorus-limited condition. Comparative genomic analysis revealed that the genome of strain IMCC26207 was distinct from that of "Candidatus Microthrix" strains; therefore, we propose the name "Candidatus Limnosphaera aquatica" for this bacterium.

Gene Expression Analysis of Gα13-/- Knockout Mouse Embryos Reveals Perturbations in Gα13 Signaling Related to Angiogenesis and Hypoxia

  • Park, Ji-Hwan;Choi, Sang-Dun
    • Genomics & Informatics
    • /
    • 제9권4호
    • /
    • pp.161-172
    • /
    • 2011
  • Angiogenesis is regulated by a large number of molecules and complex signaling mechanisms. The G protein $G{\alpha}_{13}$ is a part of this signaling mechanism as an endothelial cell movement regulator. Gene expression analysis of $G{\alpha}_{13}$ knockout mouse embryos was carried out to identify the role of $G{\alpha}_{13}$ in angiogenesis signaling during embryonic development. Hypoxia-inducible response factors including those acting as regulators of angiogenesis were over expressed, while genes related to the cell cycle, DNA replication, protein modification and cell-cell dissociation were under expressed. Functional annotation and network analysis indicate that $G{\alpha}_{13}{^{-/-}}$ embryonic mice were exposed to hypoxic conditions. The present analysis of the time course highlighted the significantly high levels of disorder in the development of the cardiovascular system. The data suggested that hypoxia-inducible factors including those associated with angiogenesis and abnormalities related to endothelial cell division contributed to the developmental failure of $G{\alpha}_{13}$ knockout mouse embryos.

A bioinformatics approach to characterize a hypothetical protein Q6S8D9_SARS of SARS-CoV

  • Md Foyzur Rahman;Rubait Hasan;Mohammad Shahangir Biswas;Jamiatul Husna Shathi;Md Faruk Hossain;Aoulia Yeasmin;Mohammad Zakerin Abedin;Md Tofazzal Hossain
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.3.1-3.10
    • /
    • 2023
  • Characterization as well as prediction of the secondary and tertiary structure of hypothetical proteins from their amino acid sequences uploaded in databases by in silico approach are the critical issues in computational biology. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), which is responsible for pneumonia alike diseases, possesses a wide range of proteins of which many are still uncharacterized. The current study was conducted to reveal the physicochemical characteristics and structures of an uncharacterized protein Q6S8D9_SARS of SARS-CoV. Following the common flowchart of characterizing a hypothetical protein, several sophisticated computerized tools e.g., ExPASy Protparam, CD Search, SOPMA, PSIPRED, HHpred, etc. were employed to discover the functions and structures of Q6S8D9_SARS. After delineating the secondary and tertiary structures of the protein, some quality evaluating tools e.g., PROCHECK, ProSA-web etc. were performed to assess the structures and later the active site was identified also by CASTp v.3.0. The protein contains more negatively charged residues than positively charged residues and a high aliphatic index value which make the protein more stable. The 2D and 3D structures modeled by several bioinformatics tools ensured that the proteins had domain in it which indicated it was functional protein having the ability to trouble host antiviral inflammatory cytokine and interferon production pathways. Moreover, active site was found in the protein where ligand could bind. The study was aimed to unveil the features and structures of an uncharacterized protein of SARS-CoV which can be a therapeutic target for development of vaccines against the virus. Further research are needed to accomplish the task.

담자균 Phanerochaete chrysosporium으로부터 유래한 Glycoside Hydrolase Family 74 유전자 클로닝과 전사산물 분석 (Molecular Cloning of Glycoside Hydrolase Family 74 Genes and Analysis of Transcript Products from the Basidiomycete Phanerochaete chrysosporium)

  • 이재원;鮫島正浩;최인규
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권3호
    • /
    • pp.56-63
    • /
    • 2006
  • 셀룰로오스의 가수분해 기작을 구명하기 위하여 Phanerochaete chrysosporium으로부터 74A (PcGHF74A) 유전자를 클로닝한 결과 2162 bp의 염기서열에 해당하는 721개의 아미노산을 가지고 있으며, 다른 사상균에서 유래한 GHF74와 70~77%의 상동성을 나타냈다. Phanerochaete chrysosporium GHF74B (PcGHF74B)는 family 1에 속하는 Cellulose Binding Module (CBM)을 가지고 있으며 셀룰로오스 배양계에서 다양한 전사산물이 존재하였다. PcGHF74B 전사산물에서 나타난 splice variants를 조사하기 위해서 annotation data와 sequence data로부터 primer를 설계하여 RT-PCR분석을 수행하였으며 그 결과 다양한 배양조건에서 splice variants가 존재함을 확인하였다. 첫 번째는 annotation data와 다르게 11번째 intron을 포함하고 있어 full length로 추정되어지는 것으로 2562 bp에 stop codon이 존재했으며, 두 번째는 7번째 exon 1187 bp에 stop codon을 가지고 있으며 12개의 exon으로 구성되어 있다. 세 번째는 10개의 exon과 9개의 intron을 포함하고 있으며 7번째 exon에 stop codon이 존재했다. Splice variants로서 intron에 나타난 stop codon으로 인해 활성단백질의 합성이 일어나지 않을 것이며 비활성 단백질을 생성하거나 원래의 GHF74의 기능이 아닌 다른 새로운 기능을 갖는 단백질을 생성할 수 있을 것으로 사료된다.

In silico annotation of a hypothetical protein from Listeria monocytogenes EGD-e unfolds a toxin protein of the type II secretion system

  • Maisha Tasneem;Shipan Das Gupta;Monira Binte Momin;Kazi Modasser Hossain;Tasnim Binta Osman;Fazley Rabbi
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.7.1-7.11
    • /
    • 2023
  • The gram-positive bacterium Listeria monocytogenes is an important foodborne intracellular pathogen that is widespread in the environment. The functions of hypothetical proteins (HP) from various pathogenic bacteria have been successfully annotated using a variety of bioinformatics strategies. In this study, a HP Imo0888 (NP_464414.1) from the Listeria monocytogenes EGD-e strain was annotated using several bioinformatics tools. Various techniques, including CELLO, PSORTb, and SOSUIGramN, identified the candidate protein as cytoplasmic. Domain and motif analysis revealed that the target protein is a PemK/MazF-like toxin protein of the type II toxin-antitoxin system (TAS) which was consistent with BLASTp analysis. Through secondary structure analysis, we found the random coil to be the most frequent. The Alpha Fold 2 Protein Structure Prediction Database was used to determine the three-dimensional (3D) structure of the HP using the template structure of a type II TAS PemK/MazF family toxin protein (DB ID_AFDB: A0A4B9HQB9) with 99.1% sequence identity. Various quality evaluation tools, such as PROCHECK, ERRAT, Verify 3D, and QMEAN were used to validate the 3D structure. Following the YASARA energy minimization method, the target protein's 3D structure became more stable. The active site of the developed 3D structure was determined by the CASTp server. Most pathogens that harbor TAS create a crucial risk to human health. Our aim to annotate the HP Imo088 found in Listeria could offer a chance to understand bacterial pathogenicity and identify a number of potential targets for drug development.

A TMT-based quantitative proteomic analysis provides insights into the protein changes in the seeds of high- and low- protein content soybean cultivars

  • Min, Cheol Woo;Gupta, Ravi;Truong, Nguyen Van;Bae, Jin Woo;Ko, Jong Min;Lee, Byong Won;Kim, Sun Tae
    • Journal of Plant Biotechnology
    • /
    • 제47권3호
    • /
    • pp.209-217
    • /
    • 2020
  • The presence of high amounts of seed storage proteins (SSPs) improves the overall quality of soybean seeds. However, these SSPs pose a major limitation due to their high abundance in soybean seeds. Although various technical advancements including mass-spectrometry and bioinformatics resources were reported, only limited information has been derived to date on soybean seeds at proteome level. Here, we applied a tandem mass tags (TMT)-based quantitative proteomic analysis to identify the significantly modulated proteins in the seeds of two soybean cultivars showing varying protein contents. This approach led to the identification of 5,678 proteins of which 13 and 1,133 proteins showed significant changes in Daewon (low-protein content cultivar) and Saedanbaek (high-protein content cultivar) respectively. Functional annotation revealed that proteins with increased abundance in Saedanbaek were mainly associated with the amino acid and protein metabolism involved in protein synthesis, folding, targeting, and degradation. Taken together, the results presented here provide a pipeline for soybean seed proteome analysis and contribute a better understanding of proteomic changes that may lead to alteration in the protein contents in soybean seeds.

OryzaGP 2021 update: a rice gene and protein dataset for named-entity recognition

  • Larmande, Pierre;Liu, Yusha;Yao, Xinzhi;Xia, Jingbo
    • Genomics & Informatics
    • /
    • 제19권3호
    • /
    • pp.27.1-27.4
    • /
    • 2021
  • Due to the rapid evolution of high-throughput technologies, a tremendous amount of data is being produced in the biological domain, which poses a challenging task for information extraction and natural language understanding. Biological named entity recognition (NER) and named entity normalisation (NEN) are two common tasks aiming at identifying and linking biologically important entities such as genes or gene products mentioned in the literature to biological databases. In this paper, we present an updated version of OryzaGP, a gene and protein dataset for rice species created to help natural language processing (NLP) tools in processing NER and NEN tasks. To create the dataset, we selected more than 15,000 abstracts associated with articles previously curated for rice genes. We developed four dictionaries of gene and protein names associated with database identifiers. We used these dictionaries to annotate the dataset. We also annotated the dataset using pretrained NLP models. Finally, we analysed the annotation results and discussed how to improve OryzaGP.