DOI QR코드

DOI QR Code

A bioinformatics approach to characterize a hypothetical protein Q6S8D9_SARS of SARS-CoV

  • Md Foyzur Rahman (Department of Biochemistry and Biotechnology, School of Biomedical Science, Khwaja Yunus Ali University) ;
  • Rubait Hasan (Department of Biochemistry and Biotechnology, School of Biomedical Science, Khwaja Yunus Ali University) ;
  • Mohammad Shahangir Biswas (Department of Biochemistry and Biotechnology, School of Biomedical Science, Khwaja Yunus Ali University) ;
  • Jamiatul Husna Shathi (Department of Biochemistry and Biotechnology, School of Biomedical Science, Khwaja Yunus Ali University) ;
  • Md Faruk Hossain (Department of Biochemistry and Biotechnology, School of Biomedical Science, Khwaja Yunus Ali University) ;
  • Aoulia Yeasmin (Department of Botany, Sirajganj Govt. College) ;
  • Mohammad Zakerin Abedin (Department of Microbiology, School of Biomedical Science, Khwaja Yunus Ali University) ;
  • Md Tofazzal Hossain (Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi)
  • Received : 2022.04.11
  • Accepted : 2023.03.02
  • Published : 2023.03.31

Abstract

Characterization as well as prediction of the secondary and tertiary structure of hypothetical proteins from their amino acid sequences uploaded in databases by in silico approach are the critical issues in computational biology. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), which is responsible for pneumonia alike diseases, possesses a wide range of proteins of which many are still uncharacterized. The current study was conducted to reveal the physicochemical characteristics and structures of an uncharacterized protein Q6S8D9_SARS of SARS-CoV. Following the common flowchart of characterizing a hypothetical protein, several sophisticated computerized tools e.g., ExPASy Protparam, CD Search, SOPMA, PSIPRED, HHpred, etc. were employed to discover the functions and structures of Q6S8D9_SARS. After delineating the secondary and tertiary structures of the protein, some quality evaluating tools e.g., PROCHECK, ProSA-web etc. were performed to assess the structures and later the active site was identified also by CASTp v.3.0. The protein contains more negatively charged residues than positively charged residues and a high aliphatic index value which make the protein more stable. The 2D and 3D structures modeled by several bioinformatics tools ensured that the proteins had domain in it which indicated it was functional protein having the ability to trouble host antiviral inflammatory cytokine and interferon production pathways. Moreover, active site was found in the protein where ligand could bind. The study was aimed to unveil the features and structures of an uncharacterized protein of SARS-CoV which can be a therapeutic target for development of vaccines against the virus. Further research are needed to accomplish the task.

Keywords

References

  1. 2019 Novel Coronavirus (2019-nCoV): strategic preparedness and response plan. Geneva: World Health Organization, 2020. Accessed 2022 Dec 10. Available from: https://www.who.int/ publications/i/item/strategic-preparedness-and-response-planfor-the-new-coronavirus.
  2. Sharma A, Ahmad Farouk I, Lal SK. COVID-19: a review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses 2021;13:202.
  3. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507-513.
  4. Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res 2020;21:224.
  5. Gurushankara HP. Pandemics of the 21st century: lessons and future perspectives. In: Pandemic Outbreaks in the 21st Century: Epidemiology, Pathogenesis, Prevention, and Treatment (Viswanath B, ed.). London: Academic Press, 2021. pp. 139-158.
  6. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect 2020;26:729-734. https://doi.org/10.1016/j.cmi.2020.03.026
  7. Wang F, Chen C, Tan W, Yang K, Yang H. Structure of main protease from human coronavirus NL63: insights for wide spectrum anti-coronavirus drug design. Sci Rep 2016;6:22677.
  8. Alert, verification and public health management of SARS in the post-outbreak period. Geneva: World Health Organization, 2003. Accessed 2022 Dec 10. Available from: https://www.who.int/ publications/m/item/alert-verification-and-public-health-management-of-sars-in-the-post-outbreak-period.
  9. Konopka KE, Nguyen T, Jentzen JM, Rayes O, Schmidt CJ, Wilson AM, et al. Diffuse alveolar damage (DAD) resulting from coronavirus disease 2019 Infection is morphologically Indistinguishable from other causes of DAD. Histopathology 2020;77:570-578. https://doi.org/10.1111/his.14180
  10. Serrano-Aroca A, Ferrandis-Montesinos M, Wang R. Antiviral properties of alginate-based biomaterials: promising antiviral agents against SARS-CoV-2. ACS Appl Bio Mater 2021;4:5897-5907. https://doi.org/10.1021/acsabm.1c00523
  11. Seah I, Su X, Lingam G. Revisiting the dangers of the coronavirus in the ophthalmology practice. Eye (Lond) 2020;34:1155-1157. https://doi.org/10.1038/s41433-020-0790-7
  12. Li F. Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Res 2013;100:246-254. https://doi.org/10.1016/j.antiviral.2013.08.014
  13. Wong AC, Li X, Lau SK, Woo PC. Global epidemiology of bat coronaviruses. Viruses 2019;11:174.
  14. Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013;503:535-538. https://doi.org/10.1038/nature12711
  15. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015;1282:1-23. https://doi.org/10.1007/978-1-4939-2438-7_1
  16. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 2020;172:577-582. https://doi.org/10.7326/M20-0504
  17. Wassie GT, Azene AG, Bantie GM, Dessie G, Aragaw AM. Incubation period of severe acute respiratory syndrome novel coronavirus 2 that causes coronavirus disease 2019: a systematic review and meta-analysis. Curr Ther Res Clin Exp 2020;93:100607.
  18. Gonzalez-Martin C. Airborne infectious microorganisms. In: Encyclopedia of Microbiology (Schmidt T, ed.). 4th ed. Amsterdam: Academic Press, 2019. pp. 52-60.
  19. Hui DS. Epidemic and emerging coronaviruses (severe acute respiratory syndrome and Middle East respiratory syndrome). Clin Chest Med 2017;38:71-86. https://doi.org/10.1016/j.ccm.2016.11.007
  20. Dasari S. Advances in vaccination to combat pandemic outbreaks. In: Pandemic Outbreaks in the 21st Century: Epidemiology, Pathogenesis, Prevention, and Treatment (Viswanath B, ed.). London: Academic Press, 2021. pp. 123-137.
  21. Otter JA, Donskey C, Yezli S, Douthwaite S, Goldenberg SD, Weber DJ. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J Hosp Infect 2016;92:235-250. https://doi.org/10.1016/j.jhin.2015.08.027
  22. Zhang R, Li Y, Zhang AL, Wang Y, Molina MJ. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc Natl Acad Sci U S A 2020;117:14857-14863. https://doi.org/10.1073/pnas.2009637117
  23. Yang Y, Peng F, Wang R, Yange M, Guan K, Jiang T, et al. The deadly coronaviruses: the 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun 2020;109:102434.
  24. Peiris M, Poon LLM. Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) (Coronaviridae). In: Encyclopedia of Virology. 4th ed. (Bamford DH, Zuckerman M, eds.). Oxford: Academic Press, 2021. pp. 814-824.
  25. Jia N, Feng D, Fang LQ, Richardus JH, Han XN, Cao WC, et al. Case fatality of SARS in mainland China and associated risk factors. Trop Med Int Health 2009;14 Suppl 1:21-27. https://doi.org/10.1111/j.1365-3156.2008.02147.x
  26. Zhao J, Cao Y, Zhang L. Exploring the computational methods for protein-ligand binding site prediction. Comput Struct Biotechnol J 2020;18:417-426. https://doi.org/10.1016/j.csbj.2020.02.008
  27. Seco J, Luque FJ, Barril X. Binding site detection and druggability index from first principles. J Med Chem 2009;52:2363-2371. https://doi.org/10.1021/jm801385d
  28. Dukka BK. Structure-based methods for computational protein functional site prediction. Comput Struct Biotechnol J 2013;8:e201308005.
  29. Baruah C, Devi P, Sharma DK. Sequence analysis and structure prediction of SARS-CoV-2 accessory proteins 9b and ORF14: evolutionary analysis indicates close relatedness to bat coronavirus. Biomed Res Int 2020;2020:7234961.
  30. Xu J, Hu J, Wang J, Han Y, Hu Y, Wen J, et al. Genome organization of the SARS-CoV. Genomics Proteomics Bioinformatics 2003;1:226-235. https://doi.org/10.1016/S1672-0229(03)01028-3
  31. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016;14:523-534. https://doi.org/10.1038/nrmicro.2016.81
  32. Shi CS, Qi HY, Boularan C, Huang NN, Abu-Asab M, Shelhamer JH, et al. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/ TRAF3/TRAF6 signalosome. J Immunol 2014;193:3080-3089. https://doi.org/10.4049/jimmunol.1303196
  33. Gong J, Chen Y, Pu F, Sun P, He F, Zhang L, et al. Understanding membrane protein drug targets in computational perspective. Curr Drug Targets 2019;20:551-564. https://doi.org/10.2174/1389450120666181204164721
  34. Rahman MF, Rahman MR, Islam T, Zaman T, Shuvo MA, Hossain MT, et al. A bioinformatics approach to decode core genes and molecular pathways shared by breast cancer and endometrial cancer. Inform Med Unlocked 2019;17:100274.
  35. Mills CL, Beuning PJ, Ondrechen MJ. Biochemical functional predictions for protein structures of unknown or uncertain function. Comput Struct Biotechnol J 2015;13:182-191. https://doi.org/10.1016/j.csbj.2015.02.003
  36. Rahman F, Mahmud P, Karim R, Hossain T, Islam F. Determination of novel biomarkers and pathways shared by colorectal cancer and endometrial cancer via comprehensive bioinformatics analysis. Inform Med Unlocked 2020;20:100376.
  37. de Azevedo WF Jr. Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr Med Chem 2011;18:1353-1366.
  38. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res 2008;36:W5-W9. https://doi.org/10.1093/nar/gkn201
  39. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook (Walker JM, ed.). Totowa: Humana Press, 2005. pp. 571-607.
  40. Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, et al. CDD: a conserved domain database for protein classification. Nucleic Acids Res 2005;33:D192-D196. https://doi.org/10.1093/nar/gki069
  41. Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 1995;11:681-684. https://doi.org/10.1093/bioinformatics/11.6.681
  42. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics 2000;16:404-405. https://doi.org/10.1093/bioinformatics/16.4.404
  43. Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 2016;54:5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3
  44. Soding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 2005;33:W244-W248. https://doi.org/10.1093/nar/gki408
  45. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015;10:845-858. https://doi.org/10.1038/nprot.2015.053
  46. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993;26:283-291. https://doi.org/10.1107/S0021889892009944
  47. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018;46:W296-W303. https://doi.org/10.1093/nar/gky427
  48. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007;35:W407-W410. https://doi.org/10.1093/nar/gkm290
  49. Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 2018;46:W363-W367. https://doi.org/10.1093/nar/gky473
  50. DeLano WL. Pymol: an open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr 2002;40:82-92.
  51. Hasan A, Mazumder HH, Khan A, Hossain MU, Chowdhury HK. Molecular characterization of legionellosis drug target candidate enzyme phosphoglucosamine mutase from Legionella pneumophila (strain Paris): an in silico approach. Genomics Inform 2014;12:268-275. https://doi.org/10.5808/GI.2014.12.4.268
  52. Kumar N, Bhalla TC. In silico analysis of amino acid sequences in relation to specificity and physiochemical properties of some aliphatic amidases and kynurenine formamidases. J Bioinform Seq Anal 2011;3:116-123.
  53. Gamage DG, Gunaratne A, Periyannan GR, Russell TG. Applicability of instability index for in vitro protein stability prediction. Protein Pept Lett 2019;26:339-347. https://doi.org/10.2174/0929866526666190228144219
  54. Fernandez-Fernandez AD, Corpas FJ. In silico analysis of Arabidopsis thaliana peroxisomal 6-phosphogluconate dehydrogenase. Scientifica (Cairo) 2016;2016:3482760.
  55. Keskin O, Tuncbag N, Gursoy A. Predicting protein-protein interactions from the molecular to the proteome level. Chem Rev 2016;116:4884-4909. https://doi.org/10.1021/acs.chemrev.5b00683
  56. Khan MA, Islam A. SARS-CoV-2 proteins exploit host's genetic and epigenetic mediators for the annexation of key host signaling pathways. Front Mol Biosci 2020;7:598583.
  57. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-3402. https://doi.org/10.1093/nar/25.17.3389
  58. Chen Z, Xu P, Barbier JR, Willick G, Ni F. Solution structure of the osteogenic 1-31 fragment of the human parathyroid hormone. Biochemistry 2000;39:12766-12777. https://doi.org/10.1021/bi000882e