DOI QR코드

DOI QR Code

In silico annotation of a hypothetical protein from Listeria monocytogenes EGD-e unfolds a toxin protein of the type II secretion system

  • Maisha Tasneem (Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University) ;
  • Shipan Das Gupta (Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University) ;
  • Monira Binte Momin (Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University) ;
  • Kazi Modasser Hossain (Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University) ;
  • Tasnim Binta Osman (Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University) ;
  • Fazley Rabbi (Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University)
  • Received : 2022.11.09
  • Accepted : 2023.01.03
  • Published : 2023.03.31

Abstract

The gram-positive bacterium Listeria monocytogenes is an important foodborne intracellular pathogen that is widespread in the environment. The functions of hypothetical proteins (HP) from various pathogenic bacteria have been successfully annotated using a variety of bioinformatics strategies. In this study, a HP Imo0888 (NP_464414.1) from the Listeria monocytogenes EGD-e strain was annotated using several bioinformatics tools. Various techniques, including CELLO, PSORTb, and SOSUIGramN, identified the candidate protein as cytoplasmic. Domain and motif analysis revealed that the target protein is a PemK/MazF-like toxin protein of the type II toxin-antitoxin system (TAS) which was consistent with BLASTp analysis. Through secondary structure analysis, we found the random coil to be the most frequent. The Alpha Fold 2 Protein Structure Prediction Database was used to determine the three-dimensional (3D) structure of the HP using the template structure of a type II TAS PemK/MazF family toxin protein (DB ID_AFDB: A0A4B9HQB9) with 99.1% sequence identity. Various quality evaluation tools, such as PROCHECK, ERRAT, Verify 3D, and QMEAN were used to validate the 3D structure. Following the YASARA energy minimization method, the target protein's 3D structure became more stable. The active site of the developed 3D structure was determined by the CASTp server. Most pathogens that harbor TAS create a crucial risk to human health. Our aim to annotate the HP Imo088 found in Listeria could offer a chance to understand bacterial pathogenicity and identify a number of potential targets for drug development.

Keywords

Acknowledgement

The authors acknowledge the Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University for providing support to conduct the research work.

References

  1. Matereke LT, Okoh AI. Listeria monocytogenes virulence, antimicrobial resistance and environmental persistence: a review. Pathogens 2020;9:528.
  2. Allen KJ, Walecka-Zacharska E, Chen JC, Katarzyna KP, Devlieghere F, Van Meervenne E, et al. Listeria monocytogenes: an examination of food chain factors potentially contributing to antimicrobial resistance. Food Microbiol 2016;54:178-89.  https://doi.org/10.1016/j.fm.2014.08.006
  3. Iwu CD, Okoh AI. Characterization of antibiogram fingerprints in Listeria monocytogenes recovered from irrigation water and agricultural soil samples. PLoS One 2020;15:e0228956. 
  4. Cossart P, Archambaud C. The bacterial pathogen Listeria monocytogenes: an emerging model in prokaryotic transcriptomics. J Biol 2009;8:107.
  5. Ramaswamy V, Cresence VM, Rejitha JS, Lekshmi MU, Dharsana KS, Prasad SP, et al. Listeria: review of epidemiology and pathogenesis. J Microbiol Immunol Infect 2007;40:4-13.
  6. Danion F, Maury MM, Leclercq A, Moura A, Perronne V, Leotard S, et al. Listeria monocytogenes isolation from urine: a series of 15 cases and review. Clin Microbiol Infect 2017;23:583-585. https://doi.org/10.1016/j.cmi.2017.01.007
  7. Dufour C. Application of EC regulation no. 2073/2005 regarding Listeria monocytogenes in ready-to-eat foods in retail and catering sectors in Europe. Food Control 2011;22:1491-1494.  https://doi.org/10.1016/j.foodcont.2010.07.012
  8. Iwu CD, Okoh AI. Preharvest transmission routes of fresh produce associated bacterial pathogens with outbreak potentials: a review. Int J Environ Res Public Health 2019;16:4407.
  9. Cossart P, Toledo-Arana A. Listeria monocytogenes, a unique model in infection biology: an overview. Microbes Infect 2008;10: 1041-1050. https://doi.org/10.1016/j.micinf.2008.07.043
  10. Gozel B, Monney C, Aguilar-Bultet L, Rupp S, Frey J, Oevermann A. Hyperinvasiveness of Listeria monocytogenes sequence type 1 is independent of lineage I-specific genes encoding internalin-like proteins. Microbiologyopen 2019;8:e00790.
  11. Doumith M, Buchrieser C, Glaser P, Jacquet C, Martin P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 2004;42:3819-3822. https://doi.org/10.1128/JCM.42.8.3819-3822.2004
  12. Orsi RH, den Bakker HC, Wiedmann M. Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 2011;301:79-96. https://doi.org/10.1016/j.ijmm.2010.05.002
  13. Hain T, Ghai R, Billion A, Kuenne CT, Steinweg C, Izar B, et al. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics 2012;13:144.
  14. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, et al. Comparative genomics of Listeria species. Science 2001;294:849-852. https://doi.org/10.1126/science.1063447
  15. Hurley D, Luque-Sastre L, Parker CT, Huynh S, Eshwar AK, Nguyen SV, et al. Whole-genome sequencing-based characterization of 100 Listeria monocytogenes isolates collected from food processing environments over a four-year period. mSphere 2019;4:e00252-19.
  16. Johansson J, Freitag NE. Regulation of Listeria monocytogenes virulence. Microbiol Spectr 2019;7:7.4.27.
  17. Travier L, Lecuit M. Listeria monocytogenes ActA: a new function for a 'classic' virulence factor. Curr Opin Microbiol 2014;17:53-60. https://doi.org/10.1016/j.mib.2013.11.007
  18. Galperin MY, Koonin EV. 'Conserved hypothetical' proteins: prioritization of targets for experimental study. Nucleic Acids Res 2004;32:5452-5463. https://doi.org/10.1093/nar/gkh885
  19. Hawkins T, Kihara D. Function prediction of uncharacterized proteins. J Bioinform Comput Biol 2007;5:1-30. https://doi.org/10.1142/S0219720007002503
  20. Cui JJ, Tran-Dube M, Shen H, Nambu M, Kung PP, Pairish M, et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem 2011;54:6342-6363. https://doi.org/10.1021/jm2007613
  21. Nimrod G, Schushan M, Steinberg DM, Ben-Tal N. Detection of functionally important regions in "hypothetical proteins" of known structure. Structure 2008;16:1755-1763. https://doi.org/10.1016/j.str.2008.10.017
  22. Buchanan RL, Gorris LG, Hayman MM, Jackson TC, Whiting RC. A review of Listeria monocytogenes: an update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 2017;75:1-13. https://doi.org/10.1016/j.foodcont.2016.12.016
  23. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Res 2003;31:23-27. https://doi.org/10.1093/nar/gkg057
  24. Rabbi MF, Akter SA, Hasan MJ, Amin A. In silico characterization of a hypothetical protein from Shigella dysenteriae ATCC 12039 reveals a pathogenesis-related protein of the type-VI secretion system. Bioinform Biol Insights 2021;15:11779322211011140.
  25. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook (Walker JM, ed.). Totowa: Humana Press, 2005. pp. 571-607.
  26. Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins 2006;64:643-651. https://doi.org/10.1002/prot.21018
  27. Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, et al. PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 2005;21:617-623. https://doi.org/10.1093/bioinformatics/bti057
  28. Hirokawa T, Boon-Chieng S, Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 1998;14:378-379. https://doi.org/10.1093/bioinformatics/14.4.378
  29. Bhasin M, Garg A, Raghava GP. PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 2005;21: 2522-2524. https://doi.org/10.1093/bioinformatics/bti309
  30. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 2020;48:D265-D268. https://doi.org/10.1093/nar/gkz991
  31. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res 2019;47:D427-D432. https://doi.org/10.1093/nar/gky995
  32. Smoly IY, Lerman E, Ziv-Ukelson M, Yeger-Lotem E. MotifNet: a web-server for network motif analysis. Bioinformatics 2017;33:1907-1909. https://doi.org/10.1093/bioinformatics/btx056
  33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  34. Combet C, Blanchet C, Geourjon C, Deleage G. NPS@: network protein sequence analysis. Trends Biochem Sci 2000;25:147-150. https://doi.org/10.1016/S0968-0004(99)01540-6
  35. Buchan DW, Jones DT. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res 2019;47:W402-W407. https://doi.org/10.1093/nar/gkz297
  36. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 2022;50:D439-D444. https://doi.org/10.1093/nar/gkab1061
  37. Eisenberg D, Luthy R, Bowie JU. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 1997;277:396-404. https://doi.org/10.1016/S0076-6879(97)77022-8
  38. Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011;27:343-350. https://doi.org/10.1093/bioinformatics/btq662
  39. Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 2009;77 Suppl 9:114-122. https://doi.org/10.1002/prot.22570
  40. Masuda Y, Miyakawa K, Nishimura Y, Ohtsubo E. chpA and chpB, Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100. J Bacteriol 1993;175:6850-6856. https://doi.org/10.1128/jb.175.21.6850-6856.1993
  41. Gasanov U, Hughes D, Hansbro PM. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol Rev 2005;29:851-875. https://doi.org/10.1016/j.femsre.2004.12.002
  42. Xie Y, Wei Y, Shen Y, Li X, Zhou H, Tai C, et al. TADB 2.0: an updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Res 2018;46:D749-D753. https://doi.org/10.1093/nar/gkx1033
  43. Curtis TD, Takeuchi I, Gram L, Knudsen GM. The influence of the toxin/antitoxin mazEF on growth and survival of Listeria monocytogenes under stress. Toxins (Basel) 2017;9:31.
  44. Aguero JA, Akarsu H, Aguilar-Bultet L, Oevermann A, Falquet L. Large-scale comparison of toxin and antitoxins in Listeria monocytogenes. Toxins (Basel) 2020;12:29.
  45. Zhang J, Zhang Y, Zhu L, Suzuki M, Inouye M. Interference of mRNA function by sequence-specific endoribonuclease PemK. J Biol Chem 2004;279:20678-20684. https://doi.org/10.1074/jbc.M314284200
  46. DeLeo FR, Diep BA, Otto M. Host defense and pathogenesis in Staphylococcus aureus infections. Infect Dis Clin North Am 2009;23:17-34. https://doi.org/10.1016/j.idc.2008.10.003
  47. Bukowski M, Lyzen R, Helbin WM, Bonar E, Szalewska-Palasz A, Wegrzyn G, et al. A regulatory role for Staphylococcus aureus toxin-antitoxin system PemIKSa. Nat Commun 2013;4:2012.
  48. Bleriot I, Blasco L, Delgado-Valverde M, Gual de Torella A, Ambroa A, Fernandez-Garcia L, et al. Mechanisms of tolerance and resistance to chlorhexidine in clinical strains of Klebsiella pneumoniae producers of carbapenemase: role of new type II toxin-antitoxin system, PemIK. Toxins (Basel) 2020;12:566.