Acknowledgement
The authors acknowledge the Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University for providing support to conduct the research work.
References
- Matereke LT, Okoh AI. Listeria monocytogenes virulence, antimicrobial resistance and environmental persistence: a review. Pathogens 2020;9:528.
- Allen KJ, Walecka-Zacharska E, Chen JC, Katarzyna KP, Devlieghere F, Van Meervenne E, et al. Listeria monocytogenes: an examination of food chain factors potentially contributing to antimicrobial resistance. Food Microbiol 2016;54:178-89. https://doi.org/10.1016/j.fm.2014.08.006
- Iwu CD, Okoh AI. Characterization of antibiogram fingerprints in Listeria monocytogenes recovered from irrigation water and agricultural soil samples. PLoS One 2020;15:e0228956.
- Cossart P, Archambaud C. The bacterial pathogen Listeria monocytogenes: an emerging model in prokaryotic transcriptomics. J Biol 2009;8:107.
- Ramaswamy V, Cresence VM, Rejitha JS, Lekshmi MU, Dharsana KS, Prasad SP, et al. Listeria: review of epidemiology and pathogenesis. J Microbiol Immunol Infect 2007;40:4-13.
- Danion F, Maury MM, Leclercq A, Moura A, Perronne V, Leotard S, et al. Listeria monocytogenes isolation from urine: a series of 15 cases and review. Clin Microbiol Infect 2017;23:583-585. https://doi.org/10.1016/j.cmi.2017.01.007
- Dufour C. Application of EC regulation no. 2073/2005 regarding Listeria monocytogenes in ready-to-eat foods in retail and catering sectors in Europe. Food Control 2011;22:1491-1494. https://doi.org/10.1016/j.foodcont.2010.07.012
- Iwu CD, Okoh AI. Preharvest transmission routes of fresh produce associated bacterial pathogens with outbreak potentials: a review. Int J Environ Res Public Health 2019;16:4407.
- Cossart P, Toledo-Arana A. Listeria monocytogenes, a unique model in infection biology: an overview. Microbes Infect 2008;10: 1041-1050. https://doi.org/10.1016/j.micinf.2008.07.043
- Gozel B, Monney C, Aguilar-Bultet L, Rupp S, Frey J, Oevermann A. Hyperinvasiveness of Listeria monocytogenes sequence type 1 is independent of lineage I-specific genes encoding internalin-like proteins. Microbiologyopen 2019;8:e00790.
- Doumith M, Buchrieser C, Glaser P, Jacquet C, Martin P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 2004;42:3819-3822. https://doi.org/10.1128/JCM.42.8.3819-3822.2004
- Orsi RH, den Bakker HC, Wiedmann M. Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 2011;301:79-96. https://doi.org/10.1016/j.ijmm.2010.05.002
- Hain T, Ghai R, Billion A, Kuenne CT, Steinweg C, Izar B, et al. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics 2012;13:144.
- Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, et al. Comparative genomics of Listeria species. Science 2001;294:849-852. https://doi.org/10.1126/science.1063447
- Hurley D, Luque-Sastre L, Parker CT, Huynh S, Eshwar AK, Nguyen SV, et al. Whole-genome sequencing-based characterization of 100 Listeria monocytogenes isolates collected from food processing environments over a four-year period. mSphere 2019;4:e00252-19.
- Johansson J, Freitag NE. Regulation of Listeria monocytogenes virulence. Microbiol Spectr 2019;7:7.4.27.
- Travier L, Lecuit M. Listeria monocytogenes ActA: a new function for a 'classic' virulence factor. Curr Opin Microbiol 2014;17:53-60. https://doi.org/10.1016/j.mib.2013.11.007
- Galperin MY, Koonin EV. 'Conserved hypothetical' proteins: prioritization of targets for experimental study. Nucleic Acids Res 2004;32:5452-5463. https://doi.org/10.1093/nar/gkh885
- Hawkins T, Kihara D. Function prediction of uncharacterized proteins. J Bioinform Comput Biol 2007;5:1-30. https://doi.org/10.1142/S0219720007002503
- Cui JJ, Tran-Dube M, Shen H, Nambu M, Kung PP, Pairish M, et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem 2011;54:6342-6363. https://doi.org/10.1021/jm2007613
- Nimrod G, Schushan M, Steinberg DM, Ben-Tal N. Detection of functionally important regions in "hypothetical proteins" of known structure. Structure 2008;16:1755-1763. https://doi.org/10.1016/j.str.2008.10.017
- Buchanan RL, Gorris LG, Hayman MM, Jackson TC, Whiting RC. A review of Listeria monocytogenes: an update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 2017;75:1-13. https://doi.org/10.1016/j.foodcont.2016.12.016
- Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Res 2003;31:23-27. https://doi.org/10.1093/nar/gkg057
- Rabbi MF, Akter SA, Hasan MJ, Amin A. In silico characterization of a hypothetical protein from Shigella dysenteriae ATCC 12039 reveals a pathogenesis-related protein of the type-VI secretion system. Bioinform Biol Insights 2021;15:11779322211011140.
- Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook (Walker JM, ed.). Totowa: Humana Press, 2005. pp. 571-607.
- Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins 2006;64:643-651. https://doi.org/10.1002/prot.21018
- Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, et al. PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 2005;21:617-623. https://doi.org/10.1093/bioinformatics/bti057
- Hirokawa T, Boon-Chieng S, Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 1998;14:378-379. https://doi.org/10.1093/bioinformatics/14.4.378
- Bhasin M, Garg A, Raghava GP. PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 2005;21: 2522-2524. https://doi.org/10.1093/bioinformatics/bti309
- Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 2020;48:D265-D268. https://doi.org/10.1093/nar/gkz991
- El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res 2019;47:D427-D432. https://doi.org/10.1093/nar/gky995
- Smoly IY, Lerman E, Ziv-Ukelson M, Yeger-Lotem E. MotifNet: a web-server for network motif analysis. Bioinformatics 2017;33:1907-1909. https://doi.org/10.1093/bioinformatics/btx056
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Combet C, Blanchet C, Geourjon C, Deleage G. NPS@: network protein sequence analysis. Trends Biochem Sci 2000;25:147-150. https://doi.org/10.1016/S0968-0004(99)01540-6
- Buchan DW, Jones DT. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res 2019;47:W402-W407. https://doi.org/10.1093/nar/gkz297
- Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 2022;50:D439-D444. https://doi.org/10.1093/nar/gkab1061
- Eisenberg D, Luthy R, Bowie JU. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 1997;277:396-404. https://doi.org/10.1016/S0076-6879(97)77022-8
- Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011;27:343-350. https://doi.org/10.1093/bioinformatics/btq662
- Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 2009;77 Suppl 9:114-122. https://doi.org/10.1002/prot.22570
- Masuda Y, Miyakawa K, Nishimura Y, Ohtsubo E. chpA and chpB, Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100. J Bacteriol 1993;175:6850-6856. https://doi.org/10.1128/jb.175.21.6850-6856.1993
- Gasanov U, Hughes D, Hansbro PM. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol Rev 2005;29:851-875. https://doi.org/10.1016/j.femsre.2004.12.002
- Xie Y, Wei Y, Shen Y, Li X, Zhou H, Tai C, et al. TADB 2.0: an updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Res 2018;46:D749-D753. https://doi.org/10.1093/nar/gkx1033
- Curtis TD, Takeuchi I, Gram L, Knudsen GM. The influence of the toxin/antitoxin mazEF on growth and survival of Listeria monocytogenes under stress. Toxins (Basel) 2017;9:31.
- Aguero JA, Akarsu H, Aguilar-Bultet L, Oevermann A, Falquet L. Large-scale comparison of toxin and antitoxins in Listeria monocytogenes. Toxins (Basel) 2020;12:29.
- Zhang J, Zhang Y, Zhu L, Suzuki M, Inouye M. Interference of mRNA function by sequence-specific endoribonuclease PemK. J Biol Chem 2004;279:20678-20684. https://doi.org/10.1074/jbc.M314284200
- DeLeo FR, Diep BA, Otto M. Host defense and pathogenesis in Staphylococcus aureus infections. Infect Dis Clin North Am 2009;23:17-34. https://doi.org/10.1016/j.idc.2008.10.003
- Bukowski M, Lyzen R, Helbin WM, Bonar E, Szalewska-Palasz A, Wegrzyn G, et al. A regulatory role for Staphylococcus aureus toxin-antitoxin system PemIKSa. Nat Commun 2013;4:2012.
- Bleriot I, Blasco L, Delgado-Valverde M, Gual de Torella A, Ambroa A, Fernandez-Garcia L, et al. Mechanisms of tolerance and resistance to chlorhexidine in clinical strains of Klebsiella pneumoniae producers of carbapenemase: role of new type II toxin-antitoxin system, PemIK. Toxins (Basel) 2020;12:566.