References
- Abramovitch, R., Tavor, E., Jacob-Hirsch, J., Zeira, E., Amariglio, N., Pappo, O., Rechavi, G., Galun, E., and Honigman, A. (2004). A pivotal role of cyclic AMP-responsive element binding protein in tumor progression. Cancer Res. 64, 1338-1346. https://doi.org/10.1158/0008-5472.CAN-03-2089
- Arato-Ohshima, T. and Sawa, H. (1999). Over-expression of cyclin D1 induces glioma invasion by increasing matrix metalloproteinase activity and cell motility. Int. J. Cancer 83, 387-392. https://doi.org/10.1002/(SICI)1097-0215(19991029)83:3<387::AID-IJC15>3.0.CO;2-O
- Armentano, M., Filosa, A., Andolfi, G., and Studer, M. (2006). COUP-TFI is required for the formation of commissural projections in the forebrain by regulating axonal growth. Development 133, 4151-4162. https://doi.org/10.1242/dev.02600
- Arnaoutov, A. and Dasso, M. (2003). The Ran GTPase regulates kinetochore function. Dev. Cell. 5, 99-111. https://doi.org/10.1016/S1534-5807(03)00194-1
- Berestetskaya, Y.V., Faure, M.P., Ichijo, H., and Voyno- Yasenetskaya, T.A. (1998). Regulation of apoptosis by alpha- subunits of G12 and G13 proteins via apoptosis signal- regulating kinase-1. J. Biol. Chem. 273, 27816-27823. https://doi.org/10.1074/jbc.273.43.27816
- Bosco, M.C., Puppo, M., Santangelo, C., Anfosso, L., Pfeffer, U., Fardin, P., Battaglia, F., and Varesio, L. (2006). Hypoxia modifies the transcriptome of primary human monocytes: modulation of novel immune-related genes and identification of CC-chemokine ligand 20 as a new hypoxia-inducible gene. J. Immunol. 177, 1941-1955. https://doi.org/10.4049/jimmunol.177.3.1941
- Buhl, A.M., Johnson, N.L., Dhanasekaran, N., and Johnson, G.L. (1995). G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J. Biol. Chem. 270, 24631-24634. https://doi.org/10.1074/jbc.270.42.24631
- Chauvet, C., Bois-Joyeux, B., Berra, E., Pouyssegur, J., and Danan, J.L. (2004). The gene encoding human retinoic acid-receptor-related orphan receptor alpha is a target for hypoxia-inducible factor 1. Biochem. J. 384, 79-85. https://doi.org/10.1042/BJ20040709
- Chen, B., Nelson, D.M., and Sadovsky, Y. (2006). N-myc down-regulated gene 1 modulates the response of term human trophoblasts to hypoxic injury. J. Biol. Chem. 281, 2764-2772. https://doi.org/10.1074/jbc.M507330200
- Collignon, J., Sockanathan, S., Hacker, A., Cohen-Tannoudji, M., Norris, D., Rastan, S., Stevanovic, M., Goodfellow, P.N., and Lovell-Badge, R. (1996). A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122, 509-520.
- Cormier-Regard, S., Nguyen, S.V., and Claycomb, W.C. (1998). Adrenomedullin gene expression is developmentally regulated and induced by hypoxia in rat ventricular cardiac myocytes. J. Biol. Chem. 273, 17787-17792. https://doi.org/10.1074/jbc.273.28.17787
- Demartino, G.N. and Gillette, T.G. (2007). Proteasomes: machines for all reasons. Cell 129, 659-662. https://doi.org/10.1016/j.cell.2007.05.007
- Dhanasekaran, D.N. (2006). Transducing the signals: a G protein takes a new identity. Sci. STKE 2006, pe31.
- Dhanasekaran, N., Prasad, M.V., Wadsworth, S.J., Dermott, J.M., and van Rossum, G. (1994). Protein kinase C-dependent and -independent activation of Na+/H+ exchanger by G alpha 12 class of G proteins. J. Biol. Chem. 269, 11802-11806.
- Dutt, P., Nguyen, N., and Toksoz, D. (2004). Role of Lbc RhoGEF in Galpha12/13-induced signals to Rho GTPase. Cell. Signal. 16, 201-209. https://doi.org/10.1016/S0898-6568(03)00132-3
- Filipek, A. (2006). S100A6 and CacyBP/SIP - two proteins discovered in ehrlich ascites tumor cells that are potentially involved in the degradation of beta-catenin. Chemotherapy 52, 32-34. https://doi.org/10.1159/000090240
- Fukuhara, S., Murga, C., Zohar, M., Igishi, T., and Gutkind, J.S. (1999). A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J. Biol. Chem. 274, 5868-5879. https://doi.org/10.1074/jbc.274.9.5868
- Giatromanolaki, A., Koukourakis, M.I., Gatter, K.C., Harris, A.L., and Sivridis, E. (2007). BNIP3 expression in endometrial cancer relates to active hypoxia inducible factor 1a pathway and prognosis. J. Clin. Pathol. 61, 217-220. https://doi.org/10.1136/jcp.2007.046680
- Gohla, A., Harhammer, R., and Schultz, G. (1998). The G-protein G13 but not G12 mediates signaling from lysophosphatidic acid receptor via epidermal growth factor receptor to Rho. J. Biol. Chem. 273, 4653-4659. https://doi.org/10.1074/jbc.273.8.4653
- Gohla, A., Offermanns, S., Wilkie, T.M., and Schultz, G. (1999). Differential involvement of Galpha12 and Galpha13 in receptor-mediated stress fiber formation. J. Biol. Chem. 274, 17901-17907. https://doi.org/10.1074/jbc.274.25.17901
- Granata, R., Trovato, L., Lupia, E., Sala, G., Settanni, F., Camussi, G., Ghidoni, R., and Ghigo, E. (2007). Insulinlike growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms. J. Thromb. Haemost. 5, 835-845. https://doi.org/10.1111/j.1538-7836.2007.02431.x
- Hart, M.J., Jiang, X., Kozasa, T., Roscoe, W., Singer, W.D., Gilman, A.G., Sternweis, P.C., and Bollag, G. (1998). Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 280, 2112-2114. https://doi.org/10.1126/science.280.5372.2112
- Hoang, V.M., Foulk, R., Clauser, K., Burlingame, A., Gibson, B.W., and Fisher, S.J. (2001). Functional proteomics: examining the effects of hypoxia on the cytotrophoblast protein repertoire. Biochemistry 40, 4077-4086. https://doi.org/10.1021/bi0023910
- Huang, J.S., Dong, L., Kozasa, T., and Le Breton, G.C. (2007). Signaling through G(alpha)13 switch region I is essential for protease-activated receptor 1-mediated human platelet shape change, aggregation, and secretion. J. Biol. Chem. 282, 10210-10222. https://doi.org/10.1074/jbc.M605678200
- Ito, D., Walker, J.R., Thompson, C.S., Moroz, I., Lin, W., Veselits, M.L., Hakim, A.M., Fienberg, A.A., and Thinakaran, G. (2004). Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol. Cell. Biol. 24, 9456-9469. https://doi.org/10.1128/MCB.24.21.9456-9469.2004
- Jho, E.H. and Malbon, C.C. (1997). Galpha12 and Galpha13 mediate differentiation of P19 mouse embryonal carcinoma cells in response to retinoic acid. J. Biol. Chem. 272, 24461-24467. https://doi.org/10.1074/jbc.272.39.24461
- Kim, M.S., Lee, S.M., Kim, W.D., Ki, S.H., Moon, A., Lee, C.H., and Kim, S.G. (2007). G alpha 12/13 basally regulates p53 through Mdm4 expression. Mol. Cancer Res. 5, 473-484. https://doi.org/10.1158/1541-7786.MCR-06-0395
- Kitamura, K., Singer, W.D., Star, R.A., Muallem, S., and Miller, R.T. (1996). Induction of inducible nitric-oxide synthase by the heterotrimeric G protein Galpha13. J. Biol. Chem. 271, 7412-7415. https://doi.org/10.1074/jbc.271.13.7412
- Koike, T., Kimura, N., Miyazaki, K., Yabuta, T., Kumamoto, K., Takenoshita, S., Chen, J., Kobayashi, M., Hosokawa, M., Taniguchi, A., Kojima, T., Ishida, N., Kawakita, M., Yamamoto, H., Takematsu, H., Suzuki, A., Kozutsumi, Y., and Kannagi, R. (2004). Hypoxia induces adhesion molecules on cancer cells: A missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl. Acad. Sci. U.S.A. 101, 8132-8137. https://doi.org/10.1073/pnas.0402088101
- Kozasa, T., Jiang, X., Hart, M.J., Sternweis, P.M., Singer, W.D., Gilman, A.G., Bollag, G., and Sternweis, P.C. (1998). p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 280, 2109-2111. https://doi.org/10.1126/science.280.5372.2109
- Ling, Q., Jacovina, A.T., Deora, A., Febbraio, M., Simantov, R., Silverstein, R.L., Hempstead, B., Mark, W.H., and Hajjar, K.A. (2004). Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J. Clin. Invest. 113, 38-48.
- Manes, T., Zheng, D.Q., Tognin, S., Woodard, A.S., Marchisio, P.C., and Languino, L.R. (2003). Alpha(v)beta3 integrin expression up-regulates cdc2, which modulates cell migration. J. Cell Biol. 161, 817-826. https://doi.org/10.1083/jcb.200212172
- Manjunath, S., Lee, C.H., VanWinkle, P., and Bailey-Serres, J. (1998). Molecular and biochemical characterization of cytosolic phosphoglucomutase in maize. Expression during development and in response to oxygen deprivation. Plant Physiol. 117, 997-1006. https://doi.org/10.1104/pp.117.3.997
- Martin-Rendon, E., Hale, S.J., Ryan, D., Baban, D., Forde, S.P., Roubelakis, M., Sweeney, D., Moukayed, M., Harris, A.L., Davies, K., and Watt, S.M. (2007). Transcriptional profiling of human cord blood CD133+ and cultured bone marrow mesenchymal stem cells in response to hypoxia. Stem Cells 25, 1003-1012. https://doi.org/10.1634/stemcells.2006-0398
- Maruyama, K., Mori, Y., Murasawa, S., Masaki, H., Takahashi, N., Tsutusmi, Y., Moriguchi, Y., Shibazaki, Y., Tanaka, Y., Shibuya, M., Inada, M., Matsubara, H., and Iwasaka, T. (1999). Interleukin-1 beta upregulates cardiac expression of vascular endothelial growth factor and its receptor KDR/flk-1 via activation of protein tyrosine kinases. J. Mol. Cell. Cardiol. 31, 607-617. https://doi.org/10.1006/jmcc.1998.0895
- Nabors, L.B., Suswam, E., Huang, Y., Yang, X., Johnson, M.J., and King, P.H. (2003). Tumor necrosis factor alpha induces angiogenic factor up-regulation in malignant glioma cells: a role for RNA stabilization and HuR. Cancer Res. 63, 4181-4187.
- Offermanns, S., Mancino, V., Revel, J.P., and Simon, M.I. (1997). Vascular system defects and impaired cell chemokinesis as a result of Galpha13 deficiency. Science 275, 533-536. https://doi.org/10.1126/science.275.5299.533
- Olbryt, M., Jarzab, M., Jazowiecka-Rakus, J., Simek, K., Szala, S., and Sochanik, A. (2006). Gene expression profile of B 16(F10) murine melanoma cells exposed to hypoxic conditions in vitro. Gene Expr. 13, 191-203. https://doi.org/10.3727/000000006783991818
- Oldham, W.M. and Hamm, H.E. (2008). Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60-71. https://doi.org/10.1038/nrm2299
- Pandya, N.M., Dhalla, N.S., and Santani, D.D. (2006). Angiogenesis--a new target for future therapy. Vascul. Pharmacol. 44, 265-274. https://doi.org/10.1016/j.vph.2006.01.005
- Plonk, S.G., Park, S.K., and Exton, J.H. (1998). The alpha-subunit of the heterotrimeric G protein G13 activates a phospholipase D isozyme by a pathway requiring Rho family GTPases. J. Biol. Chem. 273, 4823-4826. https://doi.org/10.1074/jbc.273.9.4823
- Potente, M., Urbich, C., Sasaki, K., Hofmann, W.K., Heeschen, C., Aicher, A., Kollipara, R., DePinho, R.A., Zeiher, A.M., and Dimmeler, S. (2005). Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest. 115, 2382-2392. https://doi.org/10.1172/JCI23126
- Radhika, V., Onesime, D., Ha, J.H., and Dhanasekaran, N. (2004). Galpha13 stimulates cell migration through cortactin- interacting protein Hax-1. J. Biol. Chem. 279, 49406-49413. https://doi.org/10.1074/jbc.M408836200
- Ramirez-Solis, R., Davis, A.C., and Bradley, A. (1993). Gene targeting in embryonic stem cells. Meth. Enzymol. 225, 855-878. https://doi.org/10.1016/0076-6879(93)25054-6
- Ribatti, D., Nico, B., Spinazzi, R., Vacca, A., and Nussdorfer, G.G. (2005). The role of adrenomedullin in angiogenesis. Peptides 26, 1670-1675. https://doi.org/10.1016/j.peptides.2005.02.017
- Riobo, N.A. and Manning, D.R. (2005). Receptors coupled to heterotrimeric G proteins of the G12 family. Trends Pharmacol. Sci. 26, 146-154. https://doi.org/10.1016/j.tips.2005.01.007
- Ruppel, K.M., Willison, D., Kataoka, H., Wang, A., Zheng, Y.W., Cornelissen, I., Yin, L., Xu, S.M., and Coughlin, S.R. (2005). Essential role for Galpha13 in endothelial cells during embryonic development. Proc. Natl. Acad. Sci. U.S.A. 102, 8281-8286. https://doi.org/10.1073/pnas.0503326102
- Schwarzer, R., Tondera, D., Arnold, W., Giese, K., Klippel, A., and Kaufmann, J. (2005). REDD1 integrates hypoxia- mediated survival signaling downstream of phosphatidylinositol 3-kinase. Oncogene 24, 1138-1149. https://doi.org/10.1038/sj.onc.1208236
- Seghezzi, G., Patel, S., Ren, C.J., Gualandris, A., Pintucci, G., Robbins, E.S., Shapiro, R.L., Galloway, A.C., Rifkin, D.B., and Mignatti, P. (1998). Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J. Cell Biol. 141, 1659-1673. https://doi.org/10.1083/jcb.141.7.1659
- Shan, D., Chen, L., Wang, D., Tan, Y.C., Gu, J.L., and Huang, X.Y. (2006). The G protein G alpha(13) is required for growth factor-induced cell migration. Dev. Cell 10, 707-718. https://doi.org/10.1016/j.devcel.2006.03.014
- Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843-845. https://doi.org/10.1038/359843a0
- Simon, M.I., Strathmann, M.P., and Gautam, N. (1991). Diversity of G proteins in signal transduction, Science 252, 802-808. https://doi.org/10.1126/science.1902986
- Spiegelberg, B.D. and Hamm, H.E. (2007). Roles of G-protein-coupled receptor signaling in cancer biology and gene transcription. Curr. Opin. Genet. Dev. 17, 40-44. https://doi.org/10.1016/j.gde.2006.12.002
- Suzuki, N., Nakamura, S., Mano, H., and Kozasa, T. (2003). Galpha 12 activates Rho GTPase through tyrosine- phosphorylated leukemia-associated RhoGEF. Proc. Natl. Acad. Sci. U.S.A. 100, 733-738. https://doi.org/10.1073/pnas.0234057100
- Tai, Y.T., Podar, K., Gupta, D., Lin, B., Young, G., Akiyama, M., and Anderson, K.C. (2002). CD40 activation induces p53-dependent vascular endothelial growth factor secretion in human multiple myeloma cells. Blood 99, 1419-1427. https://doi.org/10.1182/blood.V99.4.1419
- Tazuke, S.I., Mazure, N.M., Sugawara, J., Carland, G., Faessen, G.H., Suen, L.F., Irwin, J.C., Powell, D.R., Giaccia, A.J., and Giudice, L.C. (1998). Hypoxia stimulates insulin-like growth factor binding protein 1 (IGFBP-1) gene expression in HepG2 cells: a possible model for IGFBP-1 expression in fetal hypoxia. Proc. Natl. Acad. Sci. U.S.A. 95, 10188-10193. https://doi.org/10.1073/pnas.95.17.10188
- Tsopanoglou, N.E. and Maragoudakis, M.E. (1999). On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors. J. Biol. Chem. 274, 23969-23976. https://doi.org/10.1074/jbc.274.34.23969
- Voyno-Yasenetskaya, T., Conklin, B.R., Gilbert, R.L., Hooley, R., Bourne, H.R., and Barber, D.L. (1994). G alpha 13 stimulates Na-H exchange. J. Biol. Chem. 269, 4721-4724.
- Voyno-Yasenetskaya, T.A., Pace, A.M., and Bourne, H.R. (1994). Mutant alpha subunits of G12 and G13 proteins induce neoplastic transformation of Rat-1 fibroblasts. Oncogene 9, 2559-2565.
- Wang, L., Kwak, J.H., Kim, S.I., He, Y., and Choi, M.E. (2004). Transforming growth factor-beta1 stimulates vascular endothelial growth factor 164 via mitogen-activated protein kinase kinase 3-p38alpha and p38delta mitogen- activated protein kinase-dependent pathway in murine mesangial cells. J. Biol. Chem. 279, 33213-33219. https://doi.org/10.1074/jbc.M403758200
- Wang, V., Davis, D.A., Haque, M., Huang, L.E., and Yarchoan, R. (2005). Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Res. 65, 3299-3306. https://doi.org/10.1158/0008-5472.CAN-04-4130
- Yang, J., Bian, W. and Jing, N.H. (1997). Nestin mRNA expression during the development of mouse central nervous system. Sheng Li Xue Bao 49, 657-665.
- Yu, H., Iyer, R.K., Yoo, P.K., Kern, R.M., Grody, W.W., and Cederbaum, S.D. (2002). Arginase expression in mouse embryonic development. Mech. Dev. 115, 151-155. https://doi.org/10.1016/S0925-4773(02)00089-8