• 제목/요약/키워드: protected concrete

검색결과 73건 처리시간 0.023초

복합유기섬유를 사용한 고강도 콘크리트의 기초특성 및 폭렬방지 (Fundamental Properties and Spalling Resistance of High Strength Concrete Containing Hybrid Organic fiber)

  • 배장춘;한동엽;이진우;한창평;양성환;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.745-748
    • /
    • 2006
  • This study investigates the fundamental properties and examines spalling appearances and residual compressive strength of high strength concrete containing hybrid organic fibers subjected to fire. Test showed that overall, an increase of fiber content decreased the fluidity of concrete, but specimens containing polyvinyl alcoho(PVA)+polypropylene(PP) fiber and nylon(NY)+PP fiber had improved flow. In addition, the air content of all specimens was properly ranged in target value, regardless of fiber content. As for the spalling properties when completed the fire test, control concrete exhibited spalling occurrence due to sudden elevated temperature. However, specimens containing more than 0.1 vol% of PP fiber prevented the spalling, while specimens containing PP+CL and PVA+PP fiber can protected from fire in more than 0.15vol% of the fiber content. Importantly, a specimen containing only 0.05vol% of NY+PP showed the favorable spalling resistance performance.

  • PDF

Bonding of nano-modified concrete with steel under freezing temperatures using different protection methods

  • Yasien, A.M.;Bassuoni, M.T.
    • Computers and Concrete
    • /
    • 제26권3호
    • /
    • pp.257-273
    • /
    • 2020
  • Concrete bond strength with steel re-bars depends on multiple factors including concrete-steel interface and mechanical properties of concrete. However, the hydration development of cementitious paste, and in turn the mechanical properties of concrete, are negatively affected by cold weather. This study aimed at exploring the concrete-steel bonding behavior in concrete cast and cured under freezing temperatures. Three concrete mixtures were cast and cured at -10 and -20℃. The mixtures were protected using conventional insulation blankets and a hybrid system consisting of insulation blankets and phase change materials. The mixtures comprised General Use cement, fly ash (20%), nano-silica (6%) and calcium nitrate-nitrite as a cold weather admixture system. The mixtures were tested in terms of internal temperature, compressive, tensile strengths, and modulus of elasticity. In addition, the bond strength between concrete and steel re-bars were evaluated by a pull-out test, while the quality of the interface between concrete and steel was assessed by thermal and microscopy studies. In addition, the internal heat evolution and force-slip relationship were modeled based on energy conservation and stress-strain relationships, respectively using three-dimensional (3D) finite-element software. The results showed the reliability of the proposed models to accurately predict concrete heat evolution as well as bond strength relative to experimental data. The hybrid protection system and nano-modified concrete mixtures produced good quality concrete-steel interface with adequate bond strength, without need for heating operations before casting and during curing under freezing temperatures down to -20℃.

전위변화에 의한 콘크리트내의 철근방식에 관한 연구 (Study on the Corrosionproofing in Concrete by Cathodic Protection)

  • 임서형
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권2호
    • /
    • pp.213-220
    • /
    • 1999
  • The purpose of this study is to apply cathodic protection to reinforced concrete structure and provide fundamental data to prevent the corrosion. The theory of cathodic protection of steel in concrete is to apply sufficient direct current so that corroding anodes on the steel are prevented from discharging ions. Two methods are used to supply the external current. In one, the protected metal is the cathode by connecting it to a more active metal. In the second, an external direct current power source supplies the current. The first is the sacrificial-anode system and the second the impressed-current system. The study results showed that the corrosion of the reinforcing steel in concrete could be enormously decreased by using protective current. The sacrificial anode and concrete nave to be adhered closely each in order to prevent the corrosion of reinforcing steel.

  • PDF

철근콘크리트 구조물의 강재를 이용한 내진성능 보강효과 (Retrofitting Effects of Seismic Resistance capacity of Reinforced Concrete Fraed Structure)

  • 정란;박현수;박태원;백인관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.281-288
    • /
    • 1999
  • This paper studied the efficiency of retrofitting of reinforced concrete structure which was not designed to endure an earthquake. The earthquake in Kobe Japan showed that there was a great possibility of having an earthquake even in big city and the damages were concentrated on mid or low story buildings which were not considered to be protected from an earthquake, . This experiment used reinforced concrete structure which restrained side-by-side displacement to test durability against an earthquake. This study deals with the structural performance of reinforced concrete frame structures strengthened with steel materials.

  • PDF

Spalling Properties of High Strength Concrete Mixed with Various Mineral Admixtures Subjected to Fire

  • Han, Cheon-Goo;Han, Min-Cheol;Heo, Young-Sun
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권1호
    • /
    • pp.41-48
    • /
    • 2008
  • This study investigates the spalling properties of high strength concrete designed with various types of mineral admixture and diverse content ratios of polypropylene (PP) fiber. Experimental factors considered in series I are four pozzolan types of mineral admixture and series II consists of three shrinkage reducing types of mineral admixture. PP fiber was added 0.05, 0.10 and 0.15vol. % in each mixture of series I and series II, so that totally 27 specimens including control concretes in each series were prepared. Test results showed that the increase of fiber content decreased the slump flow of fresh concrete and increased or decreased the air content depending on the declining ratio of slump flow. For the properties of compressive strength, all specimens were indicated at around 50 MPa, which is high strength range; especially all specimens in series II were 60 MPa. Fire test was conducted in standard heating curve of ISO 834 with ${\phi}100{\times}200\;mm$ size of cylinder moulds for 1 hour. The specimens incorporating silica fume exhibited severe spalling and most specimens without the silica fume could be protected from the spalling occurrence in only 0.05vol % of PP fiber content. This fire test results demonstrated that the spalling occurrence in high strength concrete was not only affected by concrete strength related to the porosity of microstructure but also, even more influenced by micro pore structure induced by the mineral admixtures.

이중버블시트를 이용한 단열양생공법의 한중콘크리트 현장적용 (Field Application of Insulation Curing Method with Double Bubble Sheets Subject to Cold Weather)

  • 홍석민;백대현;김종;전충근;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 춘계 학술논문 발표대회
    • /
    • pp.57-60
    • /
    • 2008
  • This study investigated the results of insulation heat curing method using double layer bubble sheet in slab concrete and mass concrete in cold weather environment. First of all, when double bubble sheets are applied, it was shown that slab concrete was protected from early freezing by remaining between 6 and 15℃ even in case outside temperature drops -9℃ below zero until the 2nd day from piling, and in the case of mass concrete, with the maximum temperature difference between the center and surface less than 4℃, crack occurrence index was close to 2 and no hydration heat crack occurred by internal constraint. The insulation heat preservation curing method using the double bubble sheet applied in this field prevented early freezing owing to stable curing temperature management, deterring concrete strength development delay at low temperature, and obtained the needed strength. Also, it was proven that the method is highly effective and economic for cold weather concrete quality maintenance through curing cost reduction like construction period shortening and labor cost reduction, etc by reducing the process of temporary equipment installation and disassembling.

  • PDF

Study on the Influence of Stray current Between Sacrificial Anode Cathodic Protection and Impressed Current Cathodic Protection in Marine Environment

  • Jeong, Jin-A;Kim, Ki-Joon
    • Corrosion Science and Technology
    • /
    • 제11권3호
    • /
    • pp.77-81
    • /
    • 2012
  • Cathodic protection(CP) is widely used as a means of protecting corrosion for not only marine structures like ship hulls and offshore drilling facilities, but also underground structures like buried pipelines and oil storage tanks. The principle of CP is that the anodic dissolution of metal can be protected by supplying electrons to the cathode metal. When unprotected structures are nearby to CP systems, interference problems between unprotected and protected structures may be happened. The stray current interference can accelerate the corrosion of nearby structures. So far many efforts have been made to reduce the interference in the electric railway systems adjacent to the underground metal structures like buried pipelines and gas/oil tanks. During recent few decades the protection technologies against stray current induced corrosion have been significantly improved and a number of techniques have been developed. However, there is very limited information an marine environments. Some complex harbor structures are protected by two cathodic protection systems, i.e. sacrificial anode cathodic protection(SACP) and impressed current cathodic protection(ICCP). In this case, when the protection current from sacrificial anodes returns to the cathode through electrolyte, it passes through nearby other low resistance metal structures. In many cases the stray current of ICCP systems influences the function of SACP. In this study, the risk of stray current from the SACP system to adjacent reinforced concrete structures has been verified through laboratory experiments. Concrete and steel pile structures modeled a part of bridge have been investigated in terms of CP potential and current between the two. The variation of stray current according to the magnitude of ICCP/SACP has been studied to mitigate it and to suggest the proper protection criteria.

복합보온양생 방법이 극저온 조건하 플라이애시 치환 콘크리트의 온도이력에 미치는 영향 (The Effect of Heat Curing Methods on the Temperature History of the Fly Ash Concrete Subjected to Extremely Low Temperature)

  • 한민철;손호정
    • 한국건설순환자원학회논문집
    • /
    • 제7권3호
    • /
    • pp.85-90
    • /
    • 2012
  • In this study, temperature profile of the fly ash concrete were studied in accordance with the change of heating curing method combination for the slab concrete in order to develop efficient protection method of the concrete subjected to $-20^{\circ}C$. The slab concretes with the size of $1200mm{\times}600mm{\times}200mm$ were fabricated with W/B of 50% and exposed to $-20^{\circ}C$ for 7 days. Five different combinations of heat curing methods were applied to the slab concrete specimen; two combinations of heat supplying by electrical heater and surface heat insulation material such as polyethylene film and quadrupled layer bubble sheet based on heat enclosure installment; three combinations of heating coil embedment and surface heat insulation materials such as polyethylene film, sawdust and quadrupled layer bubble sheet based on heat enclosure installment. Test results showed that by applying both heating coil and bubble sheet and heat enclosure, the concrete exposed to $-20^{\circ}C$ can be effectively protected from early-age frost damage.

  • PDF

금강변 저지대 시설원예단지의 침수피해 실태와 개선방안 조사연구 (Investigations on Inundation Damage in Greenhouse Complex Established at Lowlands on the Geumgang Riverside)

  • 남상운;김태철;김대식
    • 한국농공학회논문집
    • /
    • 제52권3호
    • /
    • pp.47-55
    • /
    • 2010
  • Investigations on the inundation damage and improvement measures were carried out centering around the protected horticultural complex concentrated in lowlands on the side of Geum river, in Nonsan and Buyeo, Chungnam. Most greenhouses were single-span plastic houses in this area, and tomato, strawberry and watermelon were cultivated mainly. 45.8 % of whole farmhouse were experienced in damage by inundation, and a frequency of the damage was average once in 11 years. The most urgent problem at the greenhouse culture in this area was showed in order of drainage improvement, irrigation water resources and energy saving. Consideration items in drainage improvement project for protected horticulture were showed in order of extending drain pumps, extending drain canals, using concrete flume in drain ditch. It needs to consider systematic plans that can restrain new establishment of greenhouses on the lowland paddy field in drainage area. It is difficult to remove greenhouses which are already established or prohibit cultivation. Therefore we should impose minimum duty items so that greenhouse tillers can cope with inundation. And it is thought that managing agency need to minimize farmers damage by improving drainage ability and introducing maintenance pattern that is different from rice cropping.

나일론 섬유의 형상비 및 혼입률 변화에 따른 고강도 콘크리트의 폭렬특성 (Spalling Properties of High Strength Concrete Made with Various Aspect Ratios and Fiber Contents of Nylon Fiber)

  • 송용원;허영선;이성연;한창평;양성환;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 춘계학술논문 발표대회
    • /
    • pp.55-58
    • /
    • 2007
  • This study investigates the spatting properties of high strength concrete, $60\sim80MPa$ class, designed with diverse aspect ratios and fiber content of nylon(NY). Test showed that increase of fiber content and aspect ratio in concrete decreased the fluidity of fresh concrete, especially for 1580 and 3000 aspect ratio of fiber. As for the compressive and tensile strength, adding NY fiber did not significantly affect the values In the range of high strength. After completing the fire test, the specimens containing both 750 and 1000 aspect ratios of fiber protected the spatting occurrence even in 0.05vol.% of fiber content. This specimens indicated the residual compressive strength ratio at 37%, showing the most favorable value among other specimens. Therefore, it is demonstrated that to protect the spalling in high strength concrete considering the effective fluidity, strength and economic efficiency altogether, adding 0.05vol.% of NY fiber with 750 aspect ratio Is beneficial.

  • PDF