• Title/Summary/Keyword: project scheduling

Search Result 290, Processing Time 0.022 seconds

NEW TREND OF SCHEDULING IN LINEAR CONSTRUCTION PROJECT

  • S. Sankar;J. Senthil
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.917-923
    • /
    • 2005
  • Scheduling is one of the main functions in construction project to determine the sequence of activities necessary to complete a project. The scheduling techniques provide important information crucial to a project's success. Highway construction project the paving activity can be considered a linear activity. Linear scheduling technique may be better suited for linear projects than other scheduling techniques. A new type of scheduling in linear project is calling Linear Scheduling Model (LSM). The Project monitoring and controlling is very ease to identify that all the stage of linear project and have more advantages.

  • PDF

A PROACTIVE APPROACH FOR RESOURCE CONSTRAINED SCHEDULING OF MULTIPLE PROJECTS

  • Balasubramanian Kanagasabapathi;Kuppusamy Ananthanarayanan
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.744-747
    • /
    • 2005
  • The AEC (Architecture/Engineering/Construction) industry is facing a competitive world after it entered into the 21st century. Due to improper planning and scheduling, the construction projects face severe delays in completion. Most of the present day construction organisations operate in multiple project environments where more than one projects are to be managed simultaneously. But the advantages of planning and scheduling as multiple projects have not been utilized by these organisations. Change in multi-project planning and scheduling is inevitable and often frequent, therefore the traditional planning and scheduling approaches are no more feasible in scheduling multiple construction projects. The traditional scheduling tools like CPM and PERT do not offer any help in scheduling in a resource-constrained environment. This necessitated a detailed study to model the environment realistically and to make the allocation of limited resources flexible and efficient. This paper delineates about the proactive model which will help the project managers for scheduling the multiple construction projects.

  • PDF

Development of a Heuristic Algorithm Based on Simulated Annealing for Time-Resource Tradeoffs in Project Scheduling Problems (시간-자원 트레이드오프 프로젝트 스케줄링 문제 해결을 위한 시뮬레이티드 어닐링 기반 휴리스틱 알고리즘 개발)

  • Kim, Geon-A;Seo, Yoon-Ho
    • The Journal of Information Systems
    • /
    • v.28 no.4
    • /
    • pp.175-197
    • /
    • 2019
  • Purpose This study develops a heuristic algorithm to solve the time-resource tradeoffs in project scheduling problems with a real basis. Design/methodology/approach Resource constrained project scheduling problem with time-resource tradeoff is well-known as one of the NP-hard problems. Previous researchers have proposed heuristic that minimize Makespan of project scheduling by deriving optimal combinations from finite combinations of time and resource. We studied to solve project scheduling problems by deriving optimal values from infinite combinations. Findings We developed heuristic algorithm named Push Algorithm that derives optimal combinations from infinite combinations of time and resources. Developed heuristic algorithm based on simulated annealing shows better improved results than genetic algorithm and further research suggestion was discussed as a project scheduling problem with multiple resources of real numbers.

Solution of the Resource Constrained Project Scheduling Problem on the Foundation of a Term-Based Approach (Term-Based Approach를 기초로한 자원제한프로젝트스케줄링 문제의 해결)

  • Kim, Pok-Son
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.218-224
    • /
    • 2014
  • The logic-based scheduling language RCPSV may be used to model resource-constrained project scheduling problems with variants for minimizing the project completion time. A diagram-based, nonredundant enumeration algorithm for the RCPSV-problem is proposed and the correctness of the algorithm is proved.

Advanced Alignment-Based Scheduling with Varying Production Rates for Horizontal Construction Projects

  • Greg Duffy;Asregedew Woldesenbet;David Hyung Seok Jeong;Garold D. Oberlender
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.403-411
    • /
    • 2013
  • Horizontal construction projects such as oil and gas pipeline projects typically involve repetitive-work activities with the same crew and equipment from one end of the project to the other. Repetitive scheduling also known as linear scheduling is known to have superior schedule management capabilities specifically for such horizontal construction projects. This study discusses on expanding the capabilities of repetitive scheduling to account for the variance in production rates and visual representation by developing an automated alignment based linear scheduling program for applying temporal and spatial changes in production rates. The study outlines a framework to apply changes in productions rates when and where they will occur along the horizontal alignment of the project and illustrates the complexity of construction through the time-location chart through a new linear scheduling model, Linear Scheduling Model with Varying Production Rates (LSMVPR). The program uses empirically derived production rate equations with appropriate variables as an input at the appropriate time and location based on actual 750 mile natural gas liquids pipeline project starting in Wyoming and terminating in the center of Kansas. The study showed that the changes in production rates due to time and location resulted in a close approximation of the actual progress of work as compared to the planned progress and can be modeled for use in predicting future linear construction projects. LSMVPR allows the scheduler to develop schedule durations based on minimal project information. The model also allows the scheduler to analyze the impact of various routes or start dates for construction and the corresponding impact on the schedule. In addition, the graphical format lets the construction team to visualize the obstacles in the project when and where they occur due to a new feature called the Activity Performance Index (API). This index is used to shade the linear scheduling chart by time and location with the variation in color indicating the variance in predicted production rate from the desired production rate.

  • PDF

Cradle to Gate Emissions Modeling for Scheduling of Construction Projects

  • Sharma, Achintyamugdha;Deka, Priyanka;Jois, Goutam;Jois, Umesh;Tang, Pei
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.975-983
    • /
    • 2022
  • This paper presents an innovative way of integrating scheduling and project controls with the environmental impact of a construction project to track, monitor, and manage environmental emissions at the activity level. As a starting point, scheduling and project controls help monitor the status of a project to provide an assessment of the duration and sequence of activities. Additionally, project schedules can also reflect resource allocation and costs associated with various phases of a construction project. Owners, contractors and construction managers closely monitor tasks or activities on the critical path(s) and/or longest path(s) calculated through network based scheduling techniques. However, existing industry practices do not take into account environmental impact associated with each activity during the life cycle of a project. Although the environmental impact of a project may be tracked in various ways, that tracking is not tied to the project schedule and, as such, generally is not updated when schedules are revised. In this research, a Cradle to Gate approach is used to estimate environmental emissions associated with each activity of a sample project schedule. The research group has also investigated the potential determination of scenarios of lowest environmental emissions, just as project managers currently determine scenarios with lowest cost or time. This methodology can be scaled up for future work to develop a library of unit emissions associated with commonly used construction materials and equipment. This will be helpful for project owners, contractors, and construction managers to monitor, manage, and reduce the carbon footprint associated with various projects.

  • PDF

Analysis of Construction Schedule Progress Management Practice (건설공사 진도관리의 현황 분석에 대한 연구)

  • Shin, Yoon-Kyung;Yun, Seok-Heon;Pack, Joon-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.207-211
    • /
    • 2010
  • As mega-sized and complex building construction projects are increased, the importance of project scheduling and control is emphasized. Project scheduling and control technic is not used widely yet in Korea, but interests in it is progressively increased. By now, most research projects mainly have focused on scheduling issues. Project progress management is also as much important as project scheduling issues. Current state about project progress management in Korea is analysed and way for improvements are suggested in this paper. At first, research projects undergone and practice are analysed and fields experts are survey about current state about project progress management. This study suggests the progress management method for quantitative and qualitative project progress analysis.

  • PDF

THE APPLICATION OF THEORY OF CONSTRAINT IN SCHEDULING

  • Tsung-Chieh Tsai;Min-Lan Young
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.902-907
    • /
    • 2005
  • This study was undertaken to develop a comprehensive scheduling method which applied the core concept(DBR) of TOC to PERT, and to combine Monte Carlo Simulation to revise the uncertainties of activities then to eliminate project duration uncertainty. Most of the project duration overlooks the fact that in spite of minimizing the project duration, the uncertainty of constrained resources still puts the reliability of project duration in jeopardy. For the contractor, however, the most important thing is to comply the project scheduling with the planning to reduce the uncertainty of the project activities, operational interaction and project duration. In order to demonstrate that the model can be used in construction project, the scheduling of a steel-structure project was used as a case study to verify the validity of this model.

  • PDF

Fuzzy Project Scheduling of the R&D System under the Mechatronics Environment (메카트로닉스 환경하의 R&D System의 퍼지프로젝트 일정계획)

  • 이근희;이재성;주일권
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.14 no.24
    • /
    • pp.169-177
    • /
    • 1991
  • The Existing Protect schedulings are mathematical nodes upon which probability control is based. In fact, under the mechatronics environment in the new product design and development, statistical information is very poor or sometimes non-existent. Probabilistic PERT/CPM methods are not always satisfying because those methods suppose that it is possible to apply central- limit theorem and there exists a critical path which is much mart critical than all the other paths. Fuzzy project scheduling is possibility based scheduling. For this reason, the Fuzzy Project Scheduling essential to design, development and control the new product under the mechatranics environment. This paper deals with a modeling on the project scheduling which use fuzzy set theory. Fuzzy concepts in the project scheduling are shown to be very useful and easy to work with in the R & D system.

  • PDF

A Stochastic Linear Scheduling Method using Monte Carlo Simulation

  • Soderlund, Chase;Park, Borinara
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.169-173
    • /
    • 2015
  • The linear scheduling method or line-of-balance (LOB) is a popular choice for projects that involve repetitive tasks during project execution. The method, however, produces deterministic schedule that does not convey a range of potential project outcomes under uncertainty. This results from the fact the basic scheduling parameters such as crew production rates are estimated to be deterministic based on single-point value inputs. The current linear scheduling technique, therefore, lacks the capability of reflecting the fluctuating nature of the project operation. In this paper the authors address the issue of how the variability of operation and production rates affects schedule outcomes and show a more realistic description of what might be a realistic picture of typical projects. The authors provide a solution by providing a more effective and comprehensive way of incorporating the crew performance variability using a Monte Carlo simulation technique. The simulation outcomes are discussed in terms of how this stochastic approach can overcome the shortcomings of the conventional linear scheduling technique and provide optimum schedule solutions.

  • PDF