• Title/Summary/Keyword: process variation

Search Result 3,402, Processing Time 0.023 seconds

A Study on Process and Characteristics of nMOSFET by DTC Method (DTC에 의한 MOSFET의 공정 및 소자특성에 관한 연구)

  • 류찬형;신희갑;이철인;서용진;김태형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.236-239
    • /
    • 1995
  • In short channel MOSFET, it is very important to establish optimal process conditions because of variation of devise characteristics due to the process parameters. In this paper, we used process simulator and device simulator in order to optimize process parameter which changes of the device characteristics caused by process parameter variation. From this simulation, it has been derived to the dependence relations between process parameter and device characteristics. The experimental results of fabricated short channel device according to the optimal process parameters demonstrate good device characteristics.

  • PDF

Reproducible Chemical Mechanical Polishing Characteristics of Shallow Trench Isolation Structure using High Selectivity Slurry

  • Jeong, So-Young;Seo, Yong-Jin;Kim, Sang-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.5-9
    • /
    • 2002
  • Chemical mechanical polishing (CMP) has become the preferred planarization method for multilevel interconnect technology due to its ability to achieve a high degree of feature level planarity. Especially, to achieve the higher density and greater performance, shallow trench isolation (STI)-CMP process has been attracted attention for multilevel interconnection as an essential isolation technology. Also, it was possible to apply the direct STI-CMP process without reverse moat etch step using high selectivity slurry (HSS). In this work, we determined the process margin with optimized process conditions to apply HSS STI-CMP process. Then, we evaluated the reliability and reproducibility of STI-CMP process through the optimal process conditions. The wafer-to-wafer thickness variation and day-by-day reproducibility of STI-CMP process after repeatable tests were investigated. Our experimental results show, quite acceptable and reproducible CMP results with a wafer-to-wafer thickness variation within 400$\AA$.

Springback Prediction of Tailor Rolled Blank in Hot Stamping Process by Partial Heating (국부가열을 이용한 핫스탬핑 공정에서 Tailor Rolled Blank의 스프링백 예측)

  • Shim, G.H.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.396-401
    • /
    • 2016
  • Recently, Multi-strength hot stamping process has been widely used to achieve lightweight and crashworthiness in automotive industry. In concept of multi-strength hot stamping process, process design of tailor rolled blank(TRB) in partial heating is difficult because of thickness and temperature variation of blank. In this study, springback prediction of TRB in partial heating process was performed considering its thickness and temperature variation. In partial heating process, TRB was heated up to $900^{\circ}C$ for thicker side and below $Ac_3$ transformation temperature for thinner side, respectively. Johnson-Mehl-Avrami-Kolmogorov(JMAK) equation was applied to calculate austenite fraction according to heating temperature. Calculated austenite fraction was applied to FE-simulation for the prediction of springback. Experiment for partial heating process of TRB was also performed to verify prediction accuracy of FE-simulation coupled with JMAK equation.

Design of ALT Control Chart for Small Process Variation (미세변동공정관리를 위한 가속수명시험관리도 설계)

  • Kim, Jong-Gurl;Um, Sang-Joon
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2012
  • In the manufacturing process the most widely used $\bar{X}$ chart has been applied to control the process mean. Also, Accelerated Life Test(ALT) is commonly used for efficient assurance of product life in development phases, which can be applied in production reliability acceptance test. When life data has lognormal distribution, through censored ALT design so that censored ALT data has asymptotic normal distribution, $ALT\bar{X}$ control chart integrating $\bar{X}$ chart and ALT procedure could be applied to control the mean of process in the manufacturing process. In the situation that process variation is controlled, $Z_p$ control chart is an effective method for the very small fraction nonconforming of quality characteristic. A simultaneous control scheme with $ALT\bar{X}$ control chart and $Z_p$ control chart is designed for the very small fraction nonconforming of product lifetime.

The Effect of Blank Holding Force on Thickness Variation in Simultaneous Sheet forming process with Circle and Rectangle Shape of AZ31B Magnesium Sheet (AZ31B 마그네슘 판재의 원형 및 사각형 동시변형 공정에서 블랭크 홀딩력이 두께변화에 미치는 영향)

  • Kwon, K.T.;Kang, S.B.;Kim, H.H.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.531-537
    • /
    • 2009
  • The effect of blank holding force on thickness variation in simultaneous sheet forming with rectangular shape and circular has been demonstrated. Because has investigated an effect on formability of magnesium sheet, in this paper, the effect of punch radius on formability have been thinning, various crack phenomena and forming velocity. By simultaneously forming process with circular and rectangular shape, the data of simultaneously forming process with circular and rectangular shape will used to a part development such as notebook computer case, cell phone and bipolar plate of fuel cell.

Searching Narrow Values of Cache Memory for Yield-Aware Cache Design under Process Variation (공정 변이 조건 하의 수율 인식 캐시 설계를 위한 캐시 메모리 내로우 밸류 검색)

  • Jang, Hyung-Beom;Chung, Sung-Woo;Yoon, Sung-Roh
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06b
    • /
    • pp.456-459
    • /
    • 2008
  • 공정 기술의 발전에 따라 공정 변이 (process variation)에 따른 수율 (yield) 감소 문제가 대두하고 있으며, 공정 변이 대응 설계 기법 (process variation tolerant design technique)은 하드웨어 제작 시 반드시 고려되어야 할 중요한 요소가 되었다. 캐시 메모리 (cache memory)의 경우에도 공정 변이로 인한 수율 감소 문제에 대처할 수 있는 설계 방법의 개발이 절실하다. 본 논문에서는 캐시에 저장되는 데이터의 특성 분석을 통해 공정 변이에 대응할 수 있는 새로운 캐시 구조 설계에 대한 연구를 소개한다.

  • PDF

Robust design of springback in U-channel forming using complex method (콤플렉스법을 이용한 U-채널 성형의 스프링백 강건 설계)

  • Yin, Jeong-Je;Kim, Kyung-Mo;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.117-125
    • /
    • 2013
  • Variations of springback in stamped parts are induced by the uncontrollable noises including the variation of incoming material properties, lubrication and other forming process parameters. Reduction of springback variation is very important during springback compensation processes on stamping dies and assembly processes. To reduce the variation of springback, a robust optimization methodology which uses complex method combined with orthogonal array is proposed. The proposed method is applied to the robust design of U-channel die for the reduction of side wall curl. It is shown that the drawbead and die radius of U-channel draw die can be effectively optimized by the proposed method.

Variable latency L1 data cache architecture design in multi-core processor under process variation

  • Kong, Joonho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.1-10
    • /
    • 2015
  • In this paper, we propose a new variable latency L1 data cache architecture for multi-core processors. Our proposed architecture extends the traditional variable latency cache to be geared toward the multi-core processors. We added a specialized data structure for recording the latency of the L1 data cache. Depending on the added latency to the L1 data cache, the value stored to the data structure is determined. It also tracks the remaining cycles of the L1 data cache which notifies data arrival to the reservation station in the core. As in the variable latency cache of the single-core architecture, our proposed architecture flexibly extends the cache access cycles considering process variation. The proposed cache architecture can reduce yield losses incurred by L1 cache access time failures to nearly 0%. Moreover, we quantitatively evaluate performance, power, energy consumption, power-delay product, and energy-delay product when increasing the number of cache access cycles.

Pair-Wise Serial ROIC for Uncooled Microbolometer Array

  • Haider, Syed Irtaza;Majzoub, Sohaib;Alturaigi, Mohammed;Abdel-Rahman, Mohamed
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.251-257
    • /
    • 2015
  • This work presents modelling and simulation of a readout integrated circuit (ROIC) design considering pair-wise serial configuration along with thermal modeling of an uncooled microbolometer array. A fully differential approach is used at the input stage in order to reduce fixed pattern noise due to the process variation and self-heating-related issues. Each pair of microbolometers is pulse-biased such that they both fall under the same self-heating point along the self-heating trend line. A ${\pm}10%$ process variation is considered. The proposed design is simulated with a reference input image consisting of an array of $127{\times}92$ pixels. This configuration uses only one unity gain differential amplifier along with a single 14-bit analog-to-digital converter in order to minimize the dynamic range requirement of the ROIC.

A Study on the Bending Process for Precision Pipe Forming (정밀 파이프 성형을 위한 벤딩 공정 개발에 관한 연구)

  • Kim, Hyun-Jin;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.58-65
    • /
    • 2007
  • The arbitrarily-bended pipe is widely used in a heat exchanger system. Thus, the pipe bending process has important role in performance and productivity of heat exchanger system. The purpose of this study is to investigate the bending process for manufacturing of sound pipe. And, the spring-back effect and the variation of pipe thickness should be controlled effectively. The change of spring-back ratio and the thickness variation of pipe according to the change of bending radius, bending angle and pipe thickness are analyzed by FEM analysis. The analytic results are compared with the experimental data, accordingly the results show good agreement. The method of the analysis can be applied for manufacturing of precision bended pipe.