• Title/Summary/Keyword: problem solving process

Search Result 1,645, Processing Time 0.023 seconds

Relationship between Problem Solving Ability, Critical Thinking Disposition, Creativity, Self Efficacy and Nursing Process Competence of Nursing Students (간호대학생의 문제해결능력, 비판적 사고 성향, 창의성, 자기효능감과 간호과정 수행능력과의 관계)

  • Yang, Sun-Hee;Sim, In-Ok
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.5
    • /
    • pp.612-622
    • /
    • 2016
  • The purpose of this study was to identify the relationship between problem solving ability, critical thinking disposition, creativity and nursing process competence of nursing students. The participants in the study were 246 nursing students enrolled in 2nd year of a BSN program in S city, Korea. Data were collected from June 10 to June 20, 2015 using a structured questionnaire. Relationship between general characteristics and solving ability, critical thinking disposition, creativity and nursing process competence was analyzed by t-test, ANOVA and Kruskal-wallis. Correlation among problem solving ability, critical thinking disposition, creativity and nursing process competence was analyzed by pearson correlation coefficient. There was a statistically significant difference in problem solving with the reason for application, major satisfaction. There was a significant positive correlation between problem solving ability, critical thinking disposition, creativity and self efficacy. Nursing process competence was't a significant between problem solving ability, critical thinking disposition, creativity and self efficacy. These findings show that there is a need to develop strategies to improve self efficacy and nursing process competence for student nurses.

An Analysis on the Elementary Students' Problem Solving Process in the Intuitive Stages (직관적 수준에서 초등학생들의 수학 문제해결 과정 분석)

  • Lee, Daehyun
    • Journal of the Korean School Mathematics Society
    • /
    • v.18 no.3
    • /
    • pp.241-258
    • /
    • 2015
  • The purpose of this paper is to examine the students' mathematics problem solving process in the intuitive stages. For this, researcher developed the questionnaire which consisted of problems in relation to intuitive and algorithmic problem solving. 73 fifth grade and 66 sixth grade elementary students participated in this study. I got the conclusion as follows: Elementary students' intuitive problem solving ability is very low. The rate of algorithmic problem solving is higher than that of intuitive problem solving in number and operation areas. The rate of intuitive problem solving is higher in figure and measurement areas. Students inclined to solve the problem intuitively in that case there is no clue for algorithmic solution. So, I suggest the development of problems which can be solved in the intuitive stage and the preparation of the methods to experience the insight and intuition.

Analysis of Effect of Learning to Solve Word Problems through a Structure-Representation Instruction. (문장제 해결에서 구조-표현을 강조한 학습의 교수학적 효과 분석)

  • 이종희;김부미
    • School Mathematics
    • /
    • v.5 no.3
    • /
    • pp.361-384
    • /
    • 2003
  • The purpose of this study was to investigate students' problem solving process based on the model of IDEAL if they learn to solve word problems of simultaneous linear equations through structure-representation instruction. The problem solving model of IDEAL is followed by stages; identifying problems(I), defining problems(D), exploring alternative approaches(E), acting on a plan(A). 160 second-grade students of middle schools participated in a study was classified into those of (a) a control group receiving no explicit instruction of structure-representation in word problem solving, and (b) a group receiving structure-representation instruction followed by IDEAL. As a result of this study, a structure-representation instruction improved word-problem solving performance and the students taught by the structure-representation approach discriminate more sharply equivalent problem, isomorphic problem and similar problem than the students of a control group. Also, students of the group instructed by structure-representation approach have less errors in understanding contexts and using data, in transferring mathematical symbol from internal learning relation of word problem and in setting up an equation than the students of a control group. Especially, this study shows that the model of direct transformation and the model of structure-schema in students' problem solving process of I and D stages.

  • PDF

Analyzing Cognitive or Non-Cognitive Factors Involved in the Process of Physics Problem Solving in an Everyday Context - An Effort for Sucessful Problem Solving in an Everyday Context -

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.4
    • /
    • pp.774-784
    • /
    • 2004
  • In the previous study, six factors which could disturb students' problem solving in an everyday context were identified and discussed. In this study, teaching materials to help students overcome those disturbing factors for successful problem solving in an everyday context were developed and applied to twenty-nine grade 10 students, and the effects of teaching materials were analyzed. According to the analysis of the correlation between the performance in everyday context problem solving and the benefit from the teaching materials, it was found that students who received the help from the teaching materials showed better performance with statistical significance. And students noted that teaching materials were helpful for them to solve the physics problems. Analyzing the overall performance of students in solving the everyday context problem, students in the experimental group showed better performance than the control group and this performance difference was larger among low-score students in school science testing. However, these differences were not statistically significant because the sample size was small. And, based on the analysis of interviews with students, it was also found that some students who showed low performance might not receive help from the teaching materials because the materials were too complex to be read easily, or because the basic concepts needed to solve the problem were not understood. Therefore, the results obtained from the interviews will be used to design more effective teaching for problem solving in an everyday context.

An exploratory study on the factors of creative problem-solving ability (창의적 문제해결력의 요인에 관한 탐색적 연구)

  • Yoo, Sang-Mi;Kim, Hyoungbum
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.193-200
    • /
    • 2021
  • This study was conducted to explore factors for evaluating creative problem-solving ability and to identify measurement items. After reviewing the previous study, a questionnaire was conducted, and from that, 7 factors and 26 preliminary questions were obtained. Regarding the creative problem-solving ability, problem-discovery ability, idea generation ability, idea evaluation ability, and idea execution ability were confirmed in the problem-solving process. In addition, the factors of interaction ability between problem solving practitioners and creative efficacy of problem solving practitioners were explored. Finally, in the above results, metaphors and figurative cognitive thinking ability and evaluation items for creative problem-solving ability of HTE creative education model were presented. Through subsequent studies, we hope to serve as the groundwork of the evaluation model of HTE creative education.

A Study of a Teaching and Learning Process of the Information and Communication Ethics Based on Creative Problem Solving Method (창의적 문제해결 과정 기반의 정보통신 윤리교육 교수-학습과정 연구)

  • Kwon, Jungin;Ahn, Seongjin
    • The Journal of Korean Association of Computer Education
    • /
    • v.16 no.3
    • /
    • pp.41-48
    • /
    • 2013
  • It is not easy to find out well organized teaching and learning methodology as the adverse effects of the internet have made a lot of problems because we realize the importance of the information/cyber ethic education. In this paper, I suggest the teaching and learning process of the information/cyber ethic education as applying the creative problem solving process of the six-step model proposed by A. Osborn and S. Parnes. We divided fifth grade 54 elementary school students into two groups, a experimental group and a control group, and conducted the the teaching and learning experimental methods. The experimental group, conducted educational teaching and learning methods for information ethics education using creative problem solving process, got a better result compared to the other group. It must be one of the systematic approach to lead changes of learners'; recognition, focusing on the ethics problem-solving process.

  • PDF

The Impact of Dynamic Geometry Software on High School Students' Problem Solving of the Conic Sections (동적기하가 원뿔곡선 문제 해결에 미치는 영향)

  • Hong, Seong-Kowan;Park, Cheol-Ho
    • The Mathematical Education
    • /
    • v.46 no.3
    • /
    • pp.331-349
    • /
    • 2007
  • This study aims to improve the teaching and learning method on the conic sections. To do that the researcher analyzed the impact of dynamic geometry software on students' problem solving of the conic sections. Students often say, "I have solved this kind of problem and remember hearing the problem solving process of it before." But they often are not able to resolve the question. Previous studies suggest that one of the reasons can be students' tendency to approach the conic sections only using algebra or analytic geometry without the geometric principle. So the researcher conducted instructions based on the geometric and historico-genetic principle on the conic sections using dynamic geometry software. The instructions were intended to find out if the experimental, intuitional, mathematic problem solving is necessary for the deductive process of solving geometric problems. To achieve the purpose of this study, the researcher video taped the instruction process and converted it to digital using the computer. What students' had said and discussed with the teacher during the classes was checked and their behavior was analyzed. That analysis was based on Branford's perspective, which included three different stage of proof; experimental, intuitive, and mathematical. The researcher got the following conclusions from this study. Firstly, students preferred their own manipulation or reconstruction to deductive mathematical explanation or proving of the problem. And they showed tendency to consider it as the mathematical truth when the problem is dealt with by their own manipulation. Secondly, the manipulation environment of dynamic geometry software help students correct their mathematical misconception, which result from their cognitive obstacles, and get correct ones. Thirdly, by using dynamic geometry software the teacher could help reduce the 'zone of proximal development' of Vigotsky.

  • PDF

A Study on Students' Thinking Processes in Solving Physics Problems (물리 문제 해결 과정에서의 학생들의 사고 과정에 관한 연구)

  • Park, Hac-Kyoo;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.14 no.1
    • /
    • pp.85-102
    • /
    • 1994
  • The purpose of this study was to analyze students' physics problem solving processes and to find the patterns of their problem spaces when high school and university students solved the physics problems. A total of 51 students in a high school and in two universities participated in this study. Their thinking processes in solving 5 physics problems on electric circuit were recorded by using 'thinking aloud' method and were transferal into protocols. 'The protocols were analyzed by the coding system of problem solving process. One of the major theoretical contributions of the computer simulation approach to problem solving is the idea of problem space. Such a concept of problem space was applied to physics problems on electric circuit in this study, and students' protocols were analyzed by the basic problem spaces which were made up from the item analysis by the researcher. The results are as follows: 1) On the average 4.0 test items among 5 ones were solved successfully by all subjects, and all of the items were solved correctly by only 19 persons among all of them. 2) In regard to the general steps of problem solving process, there was little difference for each item between the good solvers and the poor ones. But according to the degree of difficulty of task there was a good deal of difference. For a complex problem all of 4 steps were used by most of students, but for a simple one only 3 steps except evaluating step were used by most of them. 3) It was found in this study that most of students used mainly the microscopic approach, that is, a method of applying Ohm's law on electric circuit simply and immediately, not using the properties of electric circuits. And also it was observed that most of students used the soloing tom below, that is, a solving path in which they were the first to calculate physical Quantities of circuit elements, before they caught hold of the meaning of the given problem regardless of the degree of difficulty.

  • PDF

Integrating Creative Problem Solving into the Field of Fashion Education

  • Oh, Keunyoung
    • Fashion, Industry and Education
    • /
    • v.15 no.1
    • /
    • pp.59-65
    • /
    • 2017
  • Fashion professionals these days agree that changes in the fashion business are essential and highly value creativity as a genuine source for generating new ideas in fashion products as well as fashion business practices. As fashion professionals deal with problems of which solutions do not exist or that need innovative solutions for brand or product differentiation in the fast-paced environments, interest in creativity and creative problem solving in the field has increased; therefore, fashion educators have realized that there has been an increasing need for incorporating creativity or creative problem solving into the fashion curriculum. In this study, the researcher intended to review previous research on the use of creative problem solving in classrooms in various disciplines including the field of fashion education to provide insights and suggestions for fashion educators to integrate creative problem solving into the fashion education curriculum. Previous attempts to apply creative problem solving to solve issues in fashion classrooms have mostly limited to promoting divergent thinking techniques. It is suggested for fashion educators as well as fashion students to consider creative problem solving as a process consisting of the four distinct stages in which both divergent and convergent thinking techniques should be properly utilized stimulating various thinking strategies.