• 제목/요약/키워드: prismatic

검색결과 345건 처리시간 0.022초

A numerical study on sloshing impact loads in prismatic tanks under forced horizontal motion

  • Parthasarathty, Nanjundan;Kim, Hyunjong;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권2호
    • /
    • pp.150-155
    • /
    • 2017
  • Many engineering issues are caused because of sloshing phenomena. Numerical solution methods including the computational fluid dynamics (CFD) technique, are used to analyze these sloshing problems. In this study, a numerical technique was used to analyze sloshing impact loads in a prismatic tank under forced horizontal motion. The volume-of-fraction (VOF) method was adopted to model the sloshing flow. Six cases were used to compare the effects of the natural frequencies of a simple rectangular and prismatic tank, with impact pressure on the prismatic tank wall. This study also investigated the variable pressure loads and sloshing phenomena in prismatic tanks when the frequencies were changed. The results showed that the average of the peak pressure value for ${\omega}^{\prime}1=4.24=4.24$ was 22% higher than that of ${\omega}_1=4.6$.

Behavior of symmetrically haunched non-prismatic members subjected to temperature changes

  • Yuksel, S. Bahadir
    • Structural Engineering and Mechanics
    • /
    • 제31권3호
    • /
    • pp.297-314
    • /
    • 2009
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. Therefore, this study aimed to investigate the modeling, analysis and behavior of the non-prismatic members subjected to temperature changes with the aid of finite element modeling. The fixed-end moments and fixed-end forces of such members due to temperature changes were computed through a comprehensive parametric study. It was demonstrated that the conventional methods using frame elements can lead to significant errors, and the deviations can reach to unacceptable levels for these types of structures. The design formulas and the dimensionless design coefficients were proposed based on a comprehensive parametric study using two-dimensional plane-stress finite element models. The fixed-end actions of the non-prismatic members having parabolic and straight haunches due to temperature changes can be determined using the proposed approach without necessitating a detailed finite element model solution. Additionally, the robust results of the finite element analyses allowed examining the sources and magnitudes of the errors in the conventional analysis.

A modified modal perturbation method for vibration characteristics of non-prismatic Timoshenko beams

  • Pan, Danguang;Chen, Genda;Lou, Menglin
    • Structural Engineering and Mechanics
    • /
    • 제40권5호
    • /
    • pp.689-703
    • /
    • 2011
  • A new perturbation method is introduced to study the undamped free vibration of a non-prismatic Timoshenko beam for its natural frequencies and vibration modes. For simplicity, the natural modes of vibration of its corresponding prismatic Euler-Bernoulli beam with the same length and boundary conditions are used as Ritz base functions with necessary modifications to account for shear strain in the Timoshenko beam. The new method can transform two coupled partial differential equations governing the transverse vibration of the non-prismatic Timoshenko beam into a set of nonlinear algebraic equations. It significantly simplifies the solution process and is applicable to non-prismatic beams with various boundary conditions. Three examples indicated that the new method is more accurate than the previous perturbation methods. It successfully takes into account the effect of shear deformation of Timoshenko beams particularly at the free end of cantilever structures.

Lateral-torsional buckling of prismatic and tapered thin-walled open beams: assessing the influence of pre-buckling deflections

  • Andrade, A.;Camotim, D.
    • Steel and Composite Structures
    • /
    • 제4권4호
    • /
    • pp.281-301
    • /
    • 2004
  • The paper begins by presenting a unified variational approach to the lateral-torsional buckling (LTB) analysis of doubly symmetric prismatic and tapered thin-walled beams with open cross-sections, which accounts for the influence of the pre-buckling deflections. This approach (i) extends the kinematical assumptions usually adopted for prismatic beams, (ii) consistently uses shell membrane theory in general coordinates and (iii) adopts Trefftz's criterion to perform the bifurcation analysis. The proposed formulation is then applied to investigate the influence of the pre-buckling deflections on the LTB behaviour of prismatic and web-tapered I-section simply supported beams and cantilevers. After establishing an interesting analytical result, valid for prismatic members with shear centre loading, several elastic critical moments/loads are presented, discussed and, when possible, also compared with values reported in the literature. These numerical results, which are obtained by means of the Rayleigh-Ritz method, (i) highlight the qualitative differences existing between the LTB behaviours of simply supported beams and cantilevers and (ii) illustrate how the influence of the pre-buckling deflections on LTB is affected by a number of factors, namely ($ii_1$) the minor-to-major inertia ratio, ($ii_2$) the beam length, ($ii_3$) the location of the load point of application and ($ii_4$) the bending moment diagram shape.

Performance of non-prismatic simply supported prestressed concrete beams

  • Raju, P. Markandeya;Rajsekhar, K.;Sandeep, T. Raghuram
    • Structural Engineering and Mechanics
    • /
    • 제52권4호
    • /
    • pp.723-738
    • /
    • 2014
  • Prestressing is the most commonly employed technique in bridges and long span beams in commercial buildings as prestressing results in slender section with higher load carrying capacities. This work is an attempt to study the performance of a minimum weight prestressed concrete beam adopting a non-prismatic section so that there will be a reduction in the volume of concrete which in turn reduces the self-weight of the structure. The effect of adopting a non-prismatic section on parameters like prestressing force, area of prestressing steel, bending stresses, shear stresses and percentage loss of prestress are established theoretically. The analysis of non-prismatic prestressed beams is based on the assumption of pure bending theory. Equations are derived for dead load bending moment, eccentricity, and depth at any required section. Based on these equations an algorithm is developed which does the stress checks for the given section for every 500 mm interval of the span. Limit state method is used for the design of beam and finite difference method is used for finding out the deflection of a non-prismatic beam. All the parameters of nonprismatic prestressed concrete beams are compared with that of the rectangular prestressed concrete members and observed that minimum weight design and economical design are not same. Minimum weight design results in the increase in required area of prestressing steel.

스위프 기하학적 모델을 사용한 프리즘 쉘의 최적화 (Shape and Thickness Optimizations of Prismatic Shells Using a Simple Sweep Geometric Model)

  • 이상진
    • 한국전산구조공학회논문집
    • /
    • 제13권2호
    • /
    • pp.221-230
    • /
    • 2000
  • 스위프 기하학적 모델은 곡선, 면 또는 입방체를 주어진 경로를 따라 이동시킴으로써 기하학적 모델을 생성하는 기법이다. 따라서 스위핑을 사용하면 프리즘 쉘의 곡면을 쉽게 정의할 수 있다. 본 논문은 스위프 기하학적 모델을 프리즘 쉘의 최적화에 적용하는 절차에 대하여 기술하였다. 제시한 스위프 기하학적 모델을 유한요소법과 융합하였고 프리즘 쉘의 반응을 계산하기 위해 9절점 퇴화쉘요소를 채용하였다. 본 연구에서 제시한 최적화과정을 증명하기 위하여 수치예제를 풀어 보았다. 수치예제를 통하여 제시한 스위프 기하학적 모델이 많은 종류의 프리즘 쉘을 최적화하는데 효율적이고 신뢰적인 방법인 것으로 나타났다.

  • PDF

회선수직사위의 프리즘 교정 증례 (A Case of Prismatic Correction for Cyclovertical Heterophoria)

  • 유동식;조현국;문병연
    • 한국안광학회지
    • /
    • 제13권2호
    • /
    • pp.37-41
    • /
    • 2008
  • 목적: 이 증례의 목적은 흔치 않은 회선수직사위에 대한 프리즘 처방에 관한 것이다. 방법: 처방 프리즘은 사위도, 융합력, 조절기능 검사등과 같은 양안시 평가에서 수직이향운동의 파괴점의 중앙점으로 하였다. 결과: 수직 프리즘의 처방으로 비록 증상이 따르지 않은 수평사위는 변화가 있었으나 눈의 피로, 두통, 복시 등과 같은 증상은 개선 되었다. 그리고 회선사위는 프리즘 교정으로 나타나지 않았다. 결론: 이 사례의 프리즘 처방은 회선수직사위의 증상 완화에 유용하였다.

  • PDF

상하면의 마찰이 틀린 비직각주 소재의 3차원 업셋팅에 관한 연구 (A study on the three-dimensional upsetting of non-prismatic blocks considering different frictional conditions at two flat dies)

  • 김종호;류민형;양동열
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.345-352
    • /
    • 1989
  • 본 연구에서는 3차원 변형형상을 갖는 소재에서 상하금형면의 마찰이 다른 경우에, 작각주 소재와 비직각주 소재(non-prismatic block)에 대해서 적용할 수 있는 동적 가용 속도장(kinematically admissible velocity field)을 유도해 내고자 한다.이론계산에 있어서 가공경화를 고려하기 위해 소성변형 영역을 유한개의 요소들로 나누고 이들 각 요소에 대해서 유효변형도, 유효응력을 계산하여 에너지 소비율을 계산하였다.

방위각 추적식 프리즘형 집광조명시스템 성능평가 (Performance Evaluation of An Azimuth Tracking Prismatic Daylighting System)

  • 성태경;이충식;이을영;박연민;정채봉;김병철
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.129-137
    • /
    • 2012
  • This thesis introduced an azimuth tracking prismatic daylighting system. The system improved several issues of the previous passive prismatic daylighting system: low efficiency at sunrise and sunset, glare effect and polarized. The system was developed to track the movement of sun with azimuth tracking device, and it has its own power from the attached solar cells. We compared the with previous passive one in terms with system efficiency and daylighting factors(DF).

Free vibration analysis of non-prismatic beams under variable axial forces

  • Saffari, H.;Mohammadnejad, M.;Bagheripour, M.H.
    • Structural Engineering and Mechanics
    • /
    • 제43권5호
    • /
    • pp.561-582
    • /
    • 2012
  • Despite popularity of FEM in analysis of static and dynamic structural problems and the routine applicability of FE softwares, analytical methods based on simple mathematical relations is still largely sought by many researchers and practicing engineers around the world. Development of such analytical methods for analysis of free vibration of non-prismatic beams is also of primary concern. In this paper a new and simple method is proposed for determination of vibration frequencies of non-prismatic beams under variable axial forces. The governing differential equation is first obtained and, according to a harmonic vibration, is converted into a single variable equation in terms of location. Through repetitive integrations, integral equation for the weak form of governing equation is derived. The integration constants are determined using the boundary conditions applied to the problem. The mode shape functions are approximated by a power series. Substitution of the power series into the integral equation transforms it into a system of linear algebraic equations. Natural frequencies are determined using a non-trivial solution for system of equations. Presented method is formulated for beams having various end conditions and is extended for determination of the buckling load of non-prismatic beams. The efficiency and convergence rate of the current approach are investigated through comparison of the numerical results obtained to those obtained using available finite element software.