References
- Antes, H. (2003), "Fundamental solution and integral equations for Timoshenko beams", J. Comput. Struct., 81(6), 383-396. https://doi.org/10.1016/S0045-7949(02)00452-2
- Arboleda-Monsalve, L.G., Zapata-Medina, D.G. and Aristizabal-Ochoa, J.D. (2007), "Stability and natural frequencies of a weakened Timoshenko beam-column with generalized end conditions under constant axial load", J. Sound Vib., 307(1-2), 89-112. https://doi.org/10.1016/j.jsv.2007.06.059
- Bahadir Yuksel, S. (2012), "Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5", Struct. Eng. Mech., 42(6), 849-966. https://doi.org/10.12989/sem.2012.42.6.849
- Caruntu, D.I. (2009), "Dynamic modal characteristics of transverse vibrations of cantilevers of parabolic thickness", J. Mech. Res. Commun., 36(3), 391-404. https://doi.org/10.1016/j.mechrescom.2008.07.005
- Clough, R.W. and Penzien, J. (1975), Dynamics of Structures, McGraw-Hill Book Company, New York.
- Elfelsoufi, Z. and Azrar, L. (2005), "Buckling flutter and vibration analyses of beams by integral equation formulations", J. Comput. Struct., 83(31-32), 2632-2649. https://doi.org/10.1016/j.compstruc.2005.04.001
- Elfelsoufi, Z. and Azrar, L. (2006), "Integral equation formulation and analysis of the dynamic stability of damped beams subjected to subtangential follower forces", J. Sound Vib., 296(4-5), 690-713. https://doi.org/10.1016/j.jsv.2006.01.019
- Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform cross-section", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029
- Kaviani, P., Rahgozar, R. and Saffari, H. (2008), "Approximate analysis of tall buildings using sandwich beam models with variable cross section", Struct. Des. Tall Spec. Build., 17(2), 401-418. https://doi.org/10.1002/tal.360
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
- Li, Q.S., Fang, J.Q. and Jeary, A.P. (2000), "Free vibration analysis of cantilevered tall structures under various axial loads", J. Eng. Struct., 22(5), 525-534. https://doi.org/10.1016/S0141-0296(98)00124-2
- Li, Q.S. (2001), "Exact solutions for buckling of non-uniform columns under axial concentrated and distributed loading", Eur. J. Mech. - A/Solids, 20(3), 485-500. https://doi.org/10.1016/S0997-7538(01)01143-3
- Pan, D., Chen, G. and Lou, M. (2011), "A modified modal perturbation method for vibration characteristics of non-prismatic Timoshenko beams", Struct. Eng. Mech., 40(5), 689-703. https://doi.org/10.12989/sem.2011.40.5.689
- Rahai, A.R. and Kazemi, S. (2008), "Buckling analysis of non-prismatic columns based on modified vibration modes", J. Commun. Nonlin. Sci. Numer. Simul., 13(8), 1721-1735. https://doi.org/10.1016/j.cnsns.2006.09.009
- Shooshtari, A. and Khajavi, R. (2010), "An efficient procedure to find shape functions and stiffness matrices of non-prismatic Euler-Bernoulli and Timoshenko beam elements", Eur. J. Mech. A/Solids, 29(5), 826-836. https://doi.org/10.1016/j.euromechsol.2010.04.003
- Yavari, A., Sarkani, S. and Reddy, J.N. (2001), "On non-uniform Euler-Bernoulli and Timoshenko beams with jump discontinuities: application of distribution theory", Int. J. Solids Struct., 38(46-47), 8389-8406. https://doi.org/10.1016/S0020-7683(01)00095-6
Cited by
- Tailoring the second mode of Euler-Bernoulli beams: an analytical approach vol.51, pp.5, 2014, https://doi.org/10.12989/sem.2014.51.5.773
- A new analytical approach for determination of flexural, axial and torsional natural frequencies of beams vol.55, pp.3, 2015, https://doi.org/10.12989/sem.2015.55.3.655
- Stability and non-stationary vibration analysis of beams subjected to periodic axial forces using discrete singular convolution vol.44, pp.4, 2012, https://doi.org/10.12989/sem.2012.44.4.487
- Neuro-fuzzy and artificial neural networks modeling of uniform temperature effects of symmetric parabolic haunched beams vol.56, pp.5, 2015, https://doi.org/10.12989/sem.2015.56.5.787
- Performance of non-prismatic simply supported prestressed concrete beams vol.52, pp.4, 2014, https://doi.org/10.12989/sem.2014.52.4.723
- Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.871
- A new approach for free vibration analysis of nonuniform tall building structures with axial force effects pp.15417794, 2019, https://doi.org/10.1002/tal.1591
- Modeling for fixed-end moments of I-sections with straight haunches under concentrated load vol.23, pp.5, 2012, https://doi.org/10.12989/scs.2017.23.5.597
- Flapwise and non-local bending vibration of the rotating beams vol.72, pp.2, 2019, https://doi.org/10.12989/sem.2019.72.2.229
- Free vibrations of non-uniform beams on a non-uniform Winkler foundation using the Laguerre collocation method vol.42, pp.5, 2020, https://doi.org/10.1007/s40430-020-02332-3