• 제목/요약/키워드: pressure loads

검색결과 960건 처리시간 0.031초

A numerical study on sloshing impact loads in prismatic tanks under forced horizontal motion

  • Parthasarathty, Nanjundan;Kim, Hyunjong;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권2호
    • /
    • pp.150-155
    • /
    • 2017
  • Many engineering issues are caused because of sloshing phenomena. Numerical solution methods including the computational fluid dynamics (CFD) technique, are used to analyze these sloshing problems. In this study, a numerical technique was used to analyze sloshing impact loads in a prismatic tank under forced horizontal motion. The volume-of-fraction (VOF) method was adopted to model the sloshing flow. Six cases were used to compare the effects of the natural frequencies of a simple rectangular and prismatic tank, with impact pressure on the prismatic tank wall. This study also investigated the variable pressure loads and sloshing phenomena in prismatic tanks when the frequencies were changed. The results showed that the average of the peak pressure value for ${\omega}^{\prime}1=4.24=4.24$ was 22% higher than that of ${\omega}_1=4.6$.

Processing of dynamic wind pressure loads for temporal simulations

  • Hemon, Pascal
    • Wind and Structures
    • /
    • 제21권4호
    • /
    • pp.425-442
    • /
    • 2015
  • This paper discusses the processing of the wind loads measured in wind tunnel tests by means of multi-channel pressure scanners, in order to compute the response of 3D structures to atmospheric turbulence in the time domain. Data compression and the resulting computational savings are still a challenge in industrial contexts due to the multiple trial configurations during the construction stages. The advantage and robustness of the bi-orthogonal decomposition (BOD) is demonstrated through an example, a sail glass of the Fondation Louis Vuitton, independently from any tentative physical interpretation of the spatio-temporal decomposition terms. We show however that the energy criterion for the BOD has to be more rigorous than commonly admitted. We find a level of 99.95 % to be necessary in order to recover the extreme values of the loads. Moreover, frequency limitations of wind tunnel experiments are sometimes encountered in passing from the scaled model to the full scale structure. These can be alleviated using a spectral extension of the temporal function terms of the BOD.

Non-Gaussian approach for equivalent static wind loads from wind tunnel measurements

  • Kassir, Wafaa;Soize, Christian;Heck, Jean-Vivien;De Oliveira, Fabrice
    • Wind and Structures
    • /
    • 제25권6호
    • /
    • pp.589-608
    • /
    • 2017
  • A novel probabilistic approach is presented for estimating the equivalent static wind loads that produce a static response of the structure, which is "equivalent" in a probabilistic sense, to the extreme dynamic responses due to the unsteady pressure random field induced by the wind. This approach has especially been developed for complex structures (such as stadium roofs) for which the unsteady pressure field is measured in a boundary layer wind tunnel with a turbulent incident flow. The proposed method deals with the non-Gaussian nature of the unsteady pressure random field and presents a model that yields a good representation of both the quasi-static part and the dynamical part of the structural responses. The proposed approach is experimentally validated with a relatively simple application and is then applied to a stadium roof structure for which experimental measurements of unsteady pressures have been performed in boundary layer wind tunnel.

Thermal stress analysis for high pressure and temperature pipelines in ultra steam turbine (UST) system

  • 최대건
    • 대한조선학회지
    • /
    • 제52권2호
    • /
    • pp.19-24
    • /
    • 2015
  • A reliable assessment and analysis of the condition of high pressure and temperature steam pipelines requires defining stress state, which will take into consideration not just the impact of internal pressure and temperature but all applied loads. For that, usage of modeling and numerical methods for calculation and analysis of stress state is essential. The main aim of piping stress analysis is to check the design of piping layout, which will allow simple, efficient and economical piping supports and provide flexibility to the piping system for loads and stresses. The piping stress analysis is carried out using CAESER II software. By using this software we can evaluate stresses, stress ratios, flange condition, support loads, element forces and displacements at each node and points. In this paper, only the maximum and minimum displacement results are tabulated, which is also shown in detail by an example of main steam pipelines of UST Main Engine System [1].

Full-scale study of wind loads on roof tiles and felt underlay and comparisons with design data

  • Robertson, A.P.;Hoxey, R.P.;Rideout, N.M.;Freathy, P.
    • Wind and Structures
    • /
    • 제10권6호
    • /
    • pp.495-510
    • /
    • 2007
  • Wind pressure data have been collected on the tiled roof of a full-scale test house at Silsoe in the UK. The tiled roof was of conventional UK construction with a batten-space and bitumen-felt underlay beneath the interlocking concrete tiles. Pressures were monitored on the outer surface of selected tiles, at several locations within the batten-space, and beneath the underlay. Data were collected both with and without ventilator tiles installed on the roof. Little information appears to exist on the share of wind load between tiles and underlays which creates uncertainty in the design of both components. The present study has found that for the critical design case of maximum uplifts it would be appropriate to assign 85% of the net roof load to the tiles and 15% to the underlay when an internal pressure coefficient of -0.3 is used, and to assign 60% to the tiles and 50% to the underlay when an internal pressure coefficient of +0.2 is assumed (an element of design conservatism is inherent in the apparent 110% net loading indicated by the latter pair of percentage values). These findings indicate that compared with loads implied by BS 6399-2, UK design loads for underlay are currently conservative by 25% whilst tile loads are unconservative by around 20% in ridge and general regions and by around 45% in edge regions on average over roof slopes of $15^{\circ}-60^{\circ}$.

해빙과의 접촉 면적을 고려한 국부 빙압력 추정 연구 (Study on Estimation of Local Ice Pressures Considering Contact Area with Sea Ice)

  • 김태욱;이탁기
    • 한국해양공학회지
    • /
    • 제28권5호
    • /
    • pp.423-428
    • /
    • 2014
  • Ice loads may be conveniently categorized as local ice loads and global ice loads. Local ice loads are often defined as ice pressures acting on local areas of shell plates and stiffeners. Therefore, local ice loads are defined in all ice class rules. However, directly measuring the local ice pressure using the actual ice class vessel is a very difficult task because appropriate instruments for direct measurement must be installed on the outer hull, and they are easily damaged by direct ice contacts/impacts. This paper focuses on the estimation of the local ice pressure using the data obtained from icebreaking tests in the Arctic sea in 2010 using the Korean icebreaking research vessel (IBRV) ARAON. When she contacted the sea ice, the local deformation of the side shell was measured by the strain gauges attached to the inside of the shell. Simultaneously, the contact area between the side shell and sea ice is investigated by analyzing the distribution of the measured strain data. Finally, the ice pressures for different contact areas are estimated by performing a structural analysis.

대변형 효과를 고려한 원주방향 관통균열 엘보우의 닫힘굽힘 한계하중에 미치는 내압 영향 평가 (Effect of Internal Pressure on Plastic Limit Loads for Elbows with Circumferential Through-wall Crack under Closing Bending Incorporating Large Geometry Change Effects)

  • 홍석표;김윤재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1778-1782
    • /
    • 2007
  • Based on three-dimensional (3-D) FE limit analyses, this paper estimates effect of internal pressure on plastic limit loads for elbows with circumferential through-wall crack under in-plane bending incorporating large geometry change effects. Circumferential through-wall crack in extrados is considered. The FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method). For the bending mode, closing bending is considered. Other relevant variables affecting plastic limit loads are systematically varied, related to pipe bend geometry (the mean radius, thickness and bend curvature) and defect geometry (the length of circumferential through-wall crack).

  • PDF

하이브리드 방법을 이용한 비행 중 비행체 음향하중 예측에 관한 연구 (A study on the acoustic loads prediction of flight vehicle using computational fluid dynamics-empirical hybrid method)

  • 박서룡;김만식;김홍일;이수갑
    • 한국음향학회지
    • /
    • 제37권4호
    • /
    • pp.163-173
    • /
    • 2018
  • 본 논문에서는 비행 중 비행체 표면에 작용하는 음향하중 예측을 수행하였다. 비행 중 음향하중은 비행체 표면의 압력 변동에 의해 발생한다. 기존의 비행 중 음향하중 예측방법은 반경험적 방법으로 이론과 실험 결과를 기반으로 도출한 경험식을 활용한다. 하지만 경험식의 입력 값으로 사용되는 비행체 주변 유동특성 및 경계층 파라미터를 매번 실험을 통해 얻는 것에는 한계가 있다. 따라서 본 논문에서는 전산유체해석(Computational Fluid Dynamics, CFD) 결과를 반경험적 방법과 혼합하는 하이브리드 방법을 이용하여 비행 중 비행체에 작용하는 음향하중을 예측하였다. Cone-cylinder-flare 형상 비행체에 대해 아음속, 천음속, 초음속, 최대동압도달(Maximum dynamic pressure, Max-q) 시점의 비행 환경에 대한 음향하중 예측을 수행하였다. 하이브리드 방법 적용 시 전산유체해석결과를 기반으로 한 경계층 끝단 영역 판단 방법에 대해 비교하였고 여러 연구자에 의해 제시된 경험식에 따른 음향하중 예측결과를 비교하였다.

Study of random characteristics of fluctuating wind loads on ultra-large cooling towers in full construction process

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제26권4호
    • /
    • pp.191-204
    • /
    • 2018
  • This article presents a study of the largest-ever (height = 220 m) cooling tower using the large eddy simulation (LES) method. Information about fluid fields around the tower and 3D aerodynamic time history in full construction process were obtained, and the wind pressure distribution along the entire tower predicted by the developed model was compared with standard curves and measured curves to validate the effectiveness of the simulating method. Based on that, average wind pressure distribution and characteristics of fluid fields in the construction process of ultra-large cooling tower were investigated. The characteristics of fluid fields in full construction process and their working principles were investigated based on wind speeds and vorticities under different construction conditions. Then, time domain characteristics of ultra-large cooling towers in full construction process, including fluctuating wind loads, extreme wind loads, lift and drag coefficients, and relationship of measuring points, were studied and fitting formula of extreme wind load as a function of height was developed based on the nonlinear least square method. Additionally, the frequency domain characteristics of wind loads on the constructing tower, including wind pressure power spectrum at typical measuring points, lift and drag power spectrum, circumferential correlations between typical measuring points, and vertical correlations of lift coefficient and drag coefficient, were analyzed. The results revealed that the random characteristics of fluctuating wind loads, as well as corresponding extreme wind pressure and power spectra curves, varied significantly and in real time with the height of the constructing tower. This study provides references for design of wind loads during construction period of ultra-large cooling towers.

조합하중을 받는 해양구조물 원통부재의 최동강도 해석 (Utimate strength analysis of cylindrical members of offshore structure subject to combined loads)

  • 박치모
    • 한국해양공학회지
    • /
    • 제11권2호
    • /
    • pp.11-17
    • /
    • 1997
  • Simple and efficient way of nonlinear analysis considering elasto-plastic large deformation is introduced to calculate the strength of ring-stiffened cylinears subject to combined load of axial compression and lateral pressure. Parametric study gives various collapse modes according to the combination ratio of axial compression and lateral pressure, interaction between axial compression and lateral pressure and imperfection sensitivity of ultimate strength.

  • PDF