DOI QR코드

DOI QR Code

Non-Gaussian approach for equivalent static wind loads from wind tunnel measurements

  • Received : 2017.06.18
  • Accepted : 2017.12.21
  • Published : 2017.12.25

Abstract

A novel probabilistic approach is presented for estimating the equivalent static wind loads that produce a static response of the structure, which is "equivalent" in a probabilistic sense, to the extreme dynamic responses due to the unsteady pressure random field induced by the wind. This approach has especially been developed for complex structures (such as stadium roofs) for which the unsteady pressure field is measured in a boundary layer wind tunnel with a turbulent incident flow. The proposed method deals with the non-Gaussian nature of the unsteady pressure random field and presents a model that yields a good representation of both the quasi-static part and the dynamical part of the structural responses. The proposed approach is experimentally validated with a relatively simple application and is then applied to a stadium roof structure for which experimental measurements of unsteady pressures have been performed in boundary layer wind tunnel.

Keywords

References

  1. Andrews, H. and Patterson, C. (1976), "Singular value decomposition and digital image processing", Trans. Acoust. Spe. Sign. Proc.-IEEE, 24(1), 26-53. https://doi.org/10.1109/TASSP.1976.1162766
  2. Bienkiewicz, B., Tamura, Y., Ham, H.J., Ueda, H. and Hibi, K. (1995), "Proper orthogonal decomposition and reconstruction of multi-channel roof pressure", J. Wind Eng. Industr. Aerodyn., 54, 369-381.
  3. Bietry, J., Simiu, E. and Sacre, C. (1978), "Mean wind profiles and charge of terrain roughness", J. Struct. Div., 104(10), 1585-1593.
  4. Bietry, J., Delaunay, D. and Conti, E. (1995), "Comparison of full-scale measurement and computation of wind effects on a cable-stayed bridge", J. Wind Eng. Industr. Aerodyn., 57(2-3), 225-235. https://doi.org/10.1016/0167-6105(94)00110-Y
  5. Blaise, N. and Denoel, V. (2013), "Principal static wind loads", J. Wind Eng. Industr. Aerodyn., 113, 29-39. https://doi.org/10.1016/j.jweia.2012.12.009
  6. Blaise, N. and Denoel, V. (2015), "Adjusted equivalent static wind loads for non-gaussian linear static analysis", Proceedings of the 14th International Conference on Wind Engineering, Porto Alegre, Brazil, June.
  7. Blaise, N., Canor, T. and Denoel, V. (2016), "Reconstruction of the envelope of non-Gaussian structural responses with principal static wind loads", J. Wind Eng. Industr. Aerodyn., 149, 59-76. https://doi.org/10.1016/j.jweia.2015.12.001
  8. Byrd, R.H., Hribar, M.E. and Nocedal, J. (1999), "An interior point algorithm for large-scale nonlinear programming", SIAM J. Optim., 9(4), 877-900. https://doi.org/10.1137/S1052623497325107
  9. CEBTP (Center for Research and Studies for Buildings and Public Works) (1978), Effets Du Vent Sur La Tour Maine-Montparnasse, Comlpementary Report.
  10. Chen, X. and Kareem, A. (2004), "Equivalent static wind loads on buildings : New model", J. Struct. Eng., 130(10), 1425-1435. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:10(1425)
  11. Chen, X. and Zhou, N. (2007), "Equivalent static wind loads on low-rise buildings based on full-scale pressure measurements", Eng. Struct., 29(10), 2563-2575. https://doi.org/10.1016/j.engstruct.2007.01.007
  12. Cook, N.J. and Mayne, J.R. (1979), "A novel working approach to the assessment of wind loads for equivalent static design", J. Wind Eng. Industr. Aerodyn., 4(2), 149-164. https://doi.org/10.1016/0167-6105(79)90043-6
  13. Davenport, A.G. (1961), "The application of statistical concepts of the wind loading of structures", Proceedings of the Institution of Civil Engineers, 19(4), 449-472. https://doi.org/10.1680/iicep.1961.11304
  14. Davenport, A.G. (1967), "Gust loading factors", J. Struct. Div., 93(3), 11-34.
  15. Davenport A.G. (1995), "How can we simplify and generalize wind loads?", J. Wind Eng. Industr. Aerodyn., 54, 657-669.
  16. Desceliers, C., Ghanem, R. and Soize, C. (2006), "Maximum likelihood estimation of stochastic chaos representations from experimental data", J. Numer. Meth. Eng., 66(6), 978-1001. https://doi.org/10.1002/nme.1576
  17. Ellingwood, B.R. and Tekie, P.B. (1999), "Wind load statistics for probability-based structural design", J. Struct. Eng., 46(2), 453-463.
  18. Flamand, O. De Oliveira, F., Stathopoulos-Vlamis, A. and Papanikolas, P. (2014), "Conditions for occurrence of vortex shedding on a large cable stayed bridge: Full scale data from monitoring system", J. Wind Eng. Industr. Aerodyn., 135, 163-169. https://doi.org/10.1016/j.jweia.2014.07.011
  19. Fu, J., Xie, Z. and Li, Q.S. (2010), "Closure to equivalent static wind loads on long-span roof structures", J. Struct. Eng., 136(4), 470-471. https://doi.org/10.1061/(ASCE)ST.1943-541X.166
  20. Ghanem, R. and Spanos, P.D. (1991), Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York, U.S.A.
  21. Gill, P.E., Murray, W. and Wright, M.H. (1981), Practical Optimization, Academic Press, London, U.K.
  22. Givens, G.H. and Hoeting, J.A. (2013), Computational Statistics, 2nd Edition, Wiley, New York, U.S.A.
  23. Golub, G.H. and Van Loan, C.F. (2013), Matrix Computations, 4th Edition, The Johns Hopkins University Press, Baltimore, U.S.A.
  24. Gu, M. and Huang, Y. (2015), "Equivalent static wind loads for stability design of large span roof structures", Wind Struct., 20(1), 95-115. https://doi.org/10.12989/was.2015.20.1.095
  25. Hillewaere, J., Degroote, J., Lombaert, G., Vierendeels, J. and Degrande, G. (2013), "Computational aspects of simulating wind induced ovalling vibrations in silo groups", J. Comput. Appl. Math., 246, 161-173. https://doi.org/10.1016/j.cam.2012.06.033
  26. Hillewaere, J., Degroote, J., Lombaert, G., Vierendeels, J. and Degrande, G. (2015), "Wind-structure interaction simulations of ovalling vibrations in silo groups", J. Flu. Struct., 59, 328-350. https://doi.org/10.1016/j.jfluidstructs.2015.09.013
  27. Holmes, J.D. (1992), "Optimised peak load distributions", J. Wind Eng. Industr. Aerodyn., 41(1-3), 267-276. https://doi.org/10.1016/0167-6105(92)90419-B
  28. Holmes, J.D. (2002), "Effective static load distributions in wind engineering", J. Wind Eng. Industr. Aerodyn., 90(2), 91-109. https://doi.org/10.1016/S0167-6105(01)00164-7
  29. Huang, G. and Chen, X. (2007), "Wind load effects and equivalent static wind loads of tall buildings based on synchronous pressure measurements", Eng. Struct., 29(10), 2641-2653. https://doi.org/10.1016/j.engstruct.2007.01.011
  30. Irwin, P.A. (2009), "Wind engineering challenges of the new generation of super-tall buildings", J. Wind Eng. Industr. Aerodyn., 97(7), 328-334. https://doi.org/10.1016/j.jweia.2009.05.001
  31. Kareem, A. (1992), "Dynamic response of high-rise buildings to stochastic wind loads", J. Wind Eng. Industr. Aerodyn., 42(1-3), 1101-1112. https://doi.org/10.1016/0167-6105(92)90117-S
  32. Kasperski, M. and Niemann, H.J. (1988), "On the correlation of dynamic wind loads and structural response of natural-draught cooling towers", J. Wind Eng. Industr. Aerodyn., 30(1-3), 67-75. https://doi.org/10.1016/0167-6105(88)90072-4
  33. Kasperski, M. (1992), "Extreme wind load distributions for linear and nonlinear design", Eng. Struct., 14(1), 27-34. https://doi.org/10.1016/0141-0296(92)90005-B
  34. Kasperski, M. and Niemann, H.J. (1992), "The L.R.C (load-response-correlation)-method. A general method of estimating unfavourable wind load. Distributions for linear and non-linear structural behaviour", J. Wind Eng. Industr. Aerodyn., 43(1-3), 1753-1763. https://doi.org/10.1016/0167-6105(92)90588-2
  35. Kassir, W. (2017), A non-Gaussian probabilistic approach for the equivalent static loads of wind effects in structural dynamics from wind tunnel measurements, Ph.D. Dissertation, Universite Paris-Est, France.
  36. Kassir, W., Soize, C., Heck, J.V. and De Oliveira, F. (2017), "A non-Gaussian probabilistic approach for estimating the equivalent static wind loads on structures from unsteady pressure field", Proceedings of the 7th European-African Conference on Wind Engineering, Lige, Belgium, July.
  37. Katsumara, A., Tamura, Y. and Nakamura, O. (2007), "Universal wind load distribution simultaneously reproducing largest load effects in all subject members on large-span cantilevered roof", J. Wind Eng. Industr. Aerodyn., 95(9), 1145-1165. https://doi.org/10.1016/j.jweia.2007.01.020
  38. Kree, P. and Soize, C. (1986), Mathematics of Random Phenomena, Reidel, New York, U.S.A., French Version: Mecanique Aleatoire, Dunod, Paris, France, 1983.
  39. Kumar, K.S. and Stathopoulos, T. (2000), "Wind loads on low building roofs: A stochastic perspective", J. Struct. Eng., 126(8), 944-956. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(944)
  40. Liang, S.G., Zou, L.H., Wang, D.H. and Huang, G.Q. (2014), "Analysis of three dimensional equivalent static wind loads of symmetric high-rise buildings based on wind tunnel tests", Wind Struct., 19(5), 565-583. https://doi.org/10.12989/was.2014.19.5.565
  41. Lou,W., Zhang, L., Huang, M.F. and Li, Q.S. (2015), "Multiobjective equivalent static wind loads on complex tall buildings using non-Gaussian peak factors", J. Struct. Eng., 141(11), 04015033. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001277
  42. Lu, C.L., Huang, S.H., Tuan, A.Y., Zhi, L.H. and Su, S. (2016), "Evaluation of wind loads and wind induced responses of a super-tall building by large eddy simulation", Wind Struct., 23(4), 313-350. https://doi.org/10.12989/was.2016.23.4.313
  43. Ohayon, R. and Soize, C. (1998), Structural Acoustic and Vibration, Academic Press, San Diego, London, U.K.
  44. Patruno, L., Ricci, M., De Miranda, S. and Ubertini, F. (2017), "An efficient approach to the determination of equivalent static wind loads", J. Flu. Struct., 68, 1-14. https://doi.org/10.1016/j.jfluidstructs.2016.10.003
  45. Perrin, G., Soize, C., Duhamel, D. and Funfschilling, C. (2012), "Identification of polynomial chaos representations in high dimension from a set of realizations", SIAM J. Sci. Comput., 34(6), A2917-A2945. https://doi.org/10.1137/11084950X
  46. Repetto, M.P. and Solari, G. (2004), "Equivalent static wind actions on vertical structures", J. Wind Eng. Industr. Aerodyn., 92(5), 335-357. https://doi.org/10.1016/j.jweia.2004.01.002
  47. Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures. Fundamentals and Applications to Design, 3rd Edition), John Wiley & Sons, New York, U.S.A.
  48. Simiu, E. (2015), "Equivalent static wind loads for tall building design", J. Struct. Div., 102(4), 719-737.
  49. Soize, C. (1978), "Gust loading factors with nonlinear pressure terms", J. Struct. Div., 104(6), 991-1007.
  50. Soize, C. (2017), Uncertainty Quantification. An Accelerated Course with Advanced Applications in Computational Engineering, Springer, New York, U.S.A.
  51. Solari, G. (1985), "Mathematical model to predict 3-D wind loading on buildings", J. Eng. Mech., 111(2), 254-276. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:2(254)
  52. Solliec, C. and Mary, J. (1995), "Simultaneous measurements of fluctuating pressures using piezoresistive multichannel transducers as applied to atmospheric wind tunnel tests", J. Wind Eng. Industr. Aerodyn., 56(1), 71-86. https://doi.org/10.1016/0167-6105(94)00013-4
  53. Sun, W., Gu, M. and Zhou, X. (2015), "Universal equivalent static wind loads of fluctuating wind loads on large-span roofs based on POD compensation", Adv. Struct. Eng., 18(9), 1443-1459. https://doi.org/10.1260/1369-4332.18.9.1443
  54. Tamura, Y., Suganuma, S., Kikuchi, H. and Hibi, K. (1999), "Proper orthogonal decomposition of random wind pressure field", J. Flu. Struct., 13(7), 1069-1095. https://doi.org/10.1006/jfls.1999.0242
  55. Uematsu, Y., Yamada, M., Inoue, A. and Hongo, T. (1997), "Wind loads and wind-induced dynamic behavior of a single-layer latticed dome", J. Wind Eng. Industr. Aerodyn., 66(3), 227-248. https://doi.org/10.1016/S0167-6105(97)00133-5
  56. Uematsu, Y., Moteki, T. and Hongo, T. (2008), "Model of wind pressure field on circular flat roofs and its application to load estimation", J. Wind Eng. Industr. Aerodyn., 96(6), 1003-1014. https://doi.org/10.1016/j.jweia.2007.06.025
  57. Vaicaitis, R., Shinozuka, M. and Takeno, M. (1973), "Parametric study of wind loading on structures", J. Struct. Div., 99(3), 453-468.
  58. Vaicaitis, R. and Simiu, E. (1977), "Nonlinear pressure terms and along-wind response", J. Struct. Div., 103(4), 903-906.
  59. Vickery, B.J. and Danveport, A.G. (1967), "A comparison of theoretical and experimental determination of the response of elastic structures to turbulent flow", Proceedings of the 2nd Conference on Wind Effects on Buildings and Structures, Ottawa, Canada.
  60. Vinet, J. and De Oliveira, F. (2011), Etudes Aerodynamiques De Dimensionnement Au Vent Du Stade Velodrome De Marseille : Nouvelles Configurations, EN-CAPE 11.114 C V2, CSTB, Nantes, France.
  61. Vinet, J. and De Oliveira, F. (2013), "Etude aerodynamiques de dimensionnement au vent du stade de Nice", EN-CAPE 11.056 C-V1, CSTB, Nantes, France. Rapport confidentiel.
  62. Vinet, J., De Oliveira, F., Barre, C., Fayette, E., Consigny, F. and Vondiere, R. (2015), "Wind effects on stadium refurbishment the example of stade velodrome in Marseille, France", Proceedings of the 14th International Conference on Wind Engineering, Porto Alegre, Brazil, June.
  63. Yang, Q.S., Chen, B., Wu, Y. and Tamura, Y. (2013), "Wind-induced response and equivalent static wind load of long-span roof structures by combined ritz-proper orthogonal decomposition method", J. Struct. Eng., 139(6), 997-1008. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000715
  64. Yi, J., Zhang, J.W. and Li, Q.S. (2013), "Dynamic characteristics and wind-induced responses of a super-tall building during typhoons", J. Wind Eng. Industr. Aerodyn., 121, 116-130. https://doi.org/10.1016/j.jweia.2013.08.006
  65. Zhang, X. and Yao, M. (2015), "Numerical investigation on the wind stability of super long-span partially earth-anchored cable-stayed bridges", Wind Struct., 21(4), 407-424. https://doi.org/10.12989/was.2015.21.4.407
  66. Zhou, Y., Gu, M. and Xiang, H.F. (1999), "Alongwind static equivalent wind loads and responses of tall buildings. Part I: Unfavorable distributions of static equivalent wind loads", J. Wind Eng. Industr. Aerodyn., 79(1), 135-150. https://doi.org/10.1016/S0167-6105(97)00297-3
  67. Zhou, Y., Gu, M. and Xiang, H.F. (1999), "Alongwind static equivalent wind loads and responses of tall buildings. Part II: Effects of mode shapes", J. Wind Eng. Industr. Aerodyn., 79(1-2), 151-158. https://doi.org/10.1016/S0167-6105(97)00298-5
  68. Zhou, X. and Gu, M. (2010), "An approximation method for computing the dynamic responses and equivalent static wind loads of large-span roof structures", J. Struct. Stab. Dyn., 10(5), 1141-1165. https://doi.org/10.1142/S0219455410003944
  69. Zhi, L., Li, Q.S. and Fang, M. (2016), "Identification of wind loads and estimation of structural responses of super-tall buildings by an inverse method", Comput.-Aid. Civil Infrastruct. Eng., 31(12), 966-982. https://doi.org/10.1111/mice.12241