• Title/Summary/Keyword: pressed powder

Search Result 218, Processing Time 0.024 seconds

Glycothermal synthesis and characterization of $BaTiO_3$ glycolate (Glycothermal법에 의해 제조된 $BaTiO_3$ glycolate의 특성)

  • Kil, Hyun-Sig;Amar, Badrakh;Lim, Dae-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.286-287
    • /
    • 2006
  • Barium titanate ($BaTiO_3$) glycolate particles were synthesized at temperature as low as $100^{\circ}C$ through glycothermal reaction by using $Ba(OH)_2{\cdot}8H_2O$ and amorphous titanium hydrous gel as precursors and ethylene glycol as solvent. The particle size and morphology of $BaTiO_3$ glycolate powders can be controlled by varying the reaction conditions such as the reaction temperature and Ba:Ti molar ratio of starting precursors. After glycothermal treatment at $220^{\circ}C$ for 24 h in 1.25:1(Ba:Ti), the average particle size of the $BaTiO_3$ glycolate powder was about 200-400 nm and low agglomeration. $BaTiO_3$ powders were formed by heat-treating the glycolate powder in air at $500-1000^{\circ}C$. As a result, the size of $BaTiO_3$ crystallites changed from around 50-300 nm. It is also demonstrated that the size and shape of $BaTiO_3$ particles investigated as a function of calcination temperature. The $BaTiO_3$ particles obtained from optimum synthesis condition were pressed, sintered and measured for the dielectric property. The $BaTiO_3$ ceramics sintered at $1250^{\circ}C$ for 2 h had 98 % of theoretical density. The ceramics have an average grain size of about $1\;{\mu}m$ and displays the high dielectric constant (~3100) and low dielectric loss (<0.1) at room temperature.

  • PDF

Microstructure and Hardness of Titanium Aluminide/Carbide Composite Coatings Prepared by Reactive Spray Method (반응성 스프레이방법으로 제작한 티타늄 알루미나이드/탄화물 복합박막의 미세조직과 경도)

  • Han, Chang-Suk;Jin, Sung-Yooun
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.350-358
    • /
    • 2020
  • A variety of composite powders having different aluminum and carbon contents are prepared using various organic solvents having different amounts of carbon atoms in unit volume as ball milling agents for titanium and aluminum ball milling. The effects of substrate temperature and post-heat treatment on the texture and hardness of the coating are investigated by spraying with this reduced pressure plasma spray. The aluminum part of the composite powder evaporates during spraying, so that the film aluminum content is 30.9 mass%~37.4 mass% and the carbon content is 0.64 mass%~1.69 mass%. The main constituent phase of the coating formed on the water-cooled substrate is a non-planar α2 phase, obtained by supersaturated carbon regardless of the alloy composition. When these films are heat-treated at 1123 K, the main constituent phase becomes γ phase, and fine Ti2AlC precipitates to increase the film hardness. However, when heat treatment is performed at a higher temperature, the hardness is lowered. The main constitutional phase of the coating formed on the preheated substrate is an equilibrium gamma phase, and fine Ti2AlC precipitates. The hardness of this coating is much higher than the hardness of the coating in the sprayed state formed on the water-cooled substrate. When hot pressing is applied to the coating, the porosity decreases but hardness also decreases because Ti2AlC grows. The amount of Ti2AlC in the hot-pressed film is 4.9 vol% to 15.3 vol%, depending on the carbon content of the film.

Multicomponent IGZO Ceramics for Transparent Electrode Target Fabricated from Oxides and Nitrates (산화물과 질산염으로 제조한 투명전극 타깃용 다성분계 IGZO 세라믹스)

  • Lee, Hyun-Kwun;Yoon, Ji-Hye;Cho, Kyeong-Sik
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.375-382
    • /
    • 2019
  • Homogeneous multicomponent indium gallium zinc oxide (IGZO) ceramics for transparent electrode targets are prepared from the oxides and nitrates as the source materials, and their properties are characterized. The selected compositions were $In_2O_3:Ga_2O_3:ZnO$ = 1:1:2, 1:1:6, and 1:1:12 in mole ratio based on oxide. As revealed by X-ray diffraction analysis, calcination of the selected oxide or nitrides at $1200^{\circ}C$ results in the formation of $InGaZnO_4$, $InGaZn_3O_6$, and $InGaZn_5O_8$ phases. The 1:1:2, 1:1:6, and 1:1:12 oxide samples pressed in the form of discs exhibit relative densities of 96.9, 93.2, and 84.1%, respectively, after sintering at $1450^{\circ}C$ for 12 h. The $InGaZn_3O_6$ ceramics prepared from the oxide or nitrate batches comprise large grains and exhibit homogeneous elemental distribution. Under optimized conditions, IGZO multicomponent ceramics with controlled phases, high densities, and homogeneous microstructures (grain and elemental distribution) are obtained.

Phase Formation and Mechanical Property of YSZ-30 vol.% WC Composite Ceramics Fabricated by Hot Pressing (가압소결로 제조된 YSZ-30 vol.% WC 복합체 세라믹스의 상형성 거동과 기계적 특성)

  • Jin-Kwon Kim;Jae-Hyeong Choi;Nahm Sahn;Sung-Soo Ryu;Seongwon Kim
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.409-414
    • /
    • 2023
  • YSZ (Y2O3-stabilized zirconia)-based ceramics have excellent mechanical properties, such as high strength and wear resistance. In the application, YSZ is utilized in the bead mill, a fine-grinding process. YSZ-based parts, such as the rotor and pin, can be easily damaged by continuous application with high rpm in the bead mill process. In that case, adding WC particles improves the tribological and mechanical properties. YSZ-30 vol.% WC composite ceramics are manufactured via hot pressing under different pressures (10/30/60 MPa). The hot-pressed composite ceramics measure the physical properties, such as porosity and bulk density values. In addition, the phase formation of these composite ceramics is analyzed and discussed with those of physical properties. For the increased applied pressure of hot pressing, the tetragonality of YSZ and the crystallinity of WC are enhanced. The mechanical properties indicate an improved tendency with the increase in the applied pressure of hot pressing.

Nanostructured Hydroxyapatite for Biomedical Applications: From Powder to Bioceramic

  • Eslami, Hossein;Tahriri, Mohammadreza;Moztarzadeh, Fathollah;Bader, Rizwan;Tayebi, Lobat
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.597-607
    • /
    • 2018
  • In this study, a wet chemical method was used to synthesize nanostructured hydroxyapatite for biomedical applications. Diammonium hydrogen phosphate and calcium nitrate 4-hydrate were used as starting materials with a sodium hydroxide solution as an agent for pH adjustment. Scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, differential thermal analysis, thermal gravimetric analysis, atomic absorption spectroscopy, and ethylenediaminetetraacetic acid (EDTA) titration analysis were used to characterize the synthesized powders. Having been uniaxially pressed, the powders formed a disk-like shape. The sinterability and electrical properties of the samples were examined, and the three-point bending test allowed for the measurement of their mechanical properties. Sedimentation analysis was used to analyze the slurry ability of hydroxyapatite. As in-vitro biological properties of the samples, biocompatibility and cytotoxicity were assessed using osteoblast-like cells and the L929 cell line, respectively. Solubility was assessed by employing a simulated body fluid.

Formation of TiB2-SiC Ceramics from TiB2-Polycarbosilane Mixtures (Polycarbosilane을 이용한 TiB2-SiC 세라믹의 형성)

  • Kang, Shin-Hyuk;Lee, Dong-Hwa;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.544-548
    • /
    • 2008
  • The formation of $TiB_2-SiC$ ceramics from $TiB_2$-Polycarbosilane (PCS) mixtures was investigated. The powder mixture of $TiB_2$ with PCS was pressed at $300^{\circ}C$ with 200 MPa and sintered at $1700{\sim}2000^{\circ}C$ for 1 h in a flowing Ar atmosphere. The sintered density of $TiB_2$ with PCS is 93.7% after sintering at $2000^{\circ}C$ for 1 h, which is slightly smaller than that of the specimen without PCS. The microstructure of $TiB_2$ with PCS consists of small and uniform $TiB_2$ particles with well dispersed SiC particles derived from PCS. It is believed that the addition of PCS was effective to suppress the grain growth of $TiB_2$.

Fabrication of $CaSO_4$ : Tm, $CaSO_4$ : Tm-PTFE TLD Radiation Sensors and Its Characteristics ($CaSO_4$ : Tm, $CaSO_4$ : Tm-PTFE TLD 소자의 제작과 특성에 관한 연구)

  • Park, Myeong-Hwan;Lee, Joon-Il
    • Journal of radiological science and technology
    • /
    • v.16 no.1
    • /
    • pp.107-115
    • /
    • 1993
  • In this study, to develop highly sensitive radiation sensors, $CaSO_4$ : Tm phosphors and its disc-type TLD elements embedded PTFE(polytetrafluoroethylene) are fabricated. The highest sensitivity of $CaSO_4$ : Tm phosphors is obtained when phosphors have been doped with 0.5mol % Tm and sintered in atmosphere at $600^{\circ}C$ for two hours. Fabricated disc-type elements are made from a homogeneous mixture of phosphors and PTFE powder. They are first cold-pressed and then polymerized at $370^{\circ}C$ in air for one hour. The dose dependence of the prepared $CaSO_4$ : Tm TLD radiation sensors is linear within the range of $100{\mu}Gy{\sim}10Gy$ for X-rays and ${\gamma}-rays$. The response of $CaSO_4$ : Tm to 30keV X-rays is ten times higher than that of 1.25MeV $^{60}Co\;{\gamma}-rays$. The fading rate of the main peak is about 2% per a month. The spectral peaks of TL emission spectrum are at about 350nm and 475nm. The $CaSO_4$ : Tm TLD radiation sensors prepared in this work may be used as radiation dosimeter for personal and environmental monitoring because of their high sensitivity and little fading.

  • PDF

Studies on Fabrication of Translucent Eletrooptic Ceramics (투광성 전기 광학용 소자의 제조에 관한 연구)

  • 김재육;이태근;임응극
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.6
    • /
    • pp.71-79
    • /
    • 1985
  • In order to fabricate the translucent electrooptic ceramics which are comparable to PLZT, $PNZT^*$ has been prepared from aqueous solutions of their itrate and chlorides. In the quarternary $Pb^{1-x} Nd_x(Zr_{0.63} Ti_{0.37})^{1-\frac{x}{4}O_3$, (PNZT) $(0.02\le x\ge 0.12)$ system cold-pressed PNZT slugs were sintered in $O_2$ in pt-crucible for 45 min. at 118$0^{\circ}C$ and were then heat-treated in air for 60 hrs. at 120$0^{\circ}C$ in Al2O3 crucibles containing $PbZrO_3$ powder to control the atmosphere. Mean particle size of calcined PNZT powders was 0.1~0.15${\mu}{\textrm}{m}$. It was found that the maximum value of optical transmission has been revealed at 6~8 at. % $Nd_2O_3$ added body and that their dielectric constant has been decreased as the frequency increased. Curic temperature has been varied inversely with $Nd^{3+}$ ion content up to 8 at. % and become constant above this value. $^*Pb_{1-x}Nd_x(Zr_{0.63} Ti_{0.37})_{1-2/4}O_3$

  • PDF

Growth of Oriented Thick Films of BaFe12O19 by Reactive Diffusion

  • Fisher, John G.;Vu, Hung;Farooq, Muhammad Umer
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.333-339
    • /
    • 2014
  • Single crystal growth of $BaFe_{12}O_{19}$ by the solid state crystal growth method was attempted. Seed crystals of ${\alpha}-Fe_2O_3$ were pressed into pellets of $BaFe_{12}O_{19}$ + 2 wt% $BaCO_3$ and heat-treated at temperatures between $1150^{\circ}C$ and $1250^{\circ}C$ for up to 100 hours. Instead of single crystal growth taking place on the seed crystal, BaO diffused into the seed crystal and reacted with it to form a polycrystalline reaction layer of $BaFe_{12}O_{19}$. The microstructure, chemical composition and structure of the reaction layer were studied using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), x-ray Diffraction (XRD) and micro-Raman scattering and confirmed to be that of $BaFe_{12}O_{19}$. XRD showed that the reaction layer shows a strong degree of orientation in the (h00)/(hk0) planes in the sample sintered at $1200^{\circ}C$. $BaFe_{12}O_{19}$ layers with a degree of orientation in the (hk0) planes could also be grown by heat-treating an ${\alpha}-Fe_2O_3$ seed crystal buried in $BaCO_3$ powder.

Preparation, Characterization and Low Frequency a.c. Conduction of Polypyrrole-Lead Titanate Composites

  • Basavaraja, C.;Choi, Young-Min;Park, Hyun-Tae;Huh, Do-Sung;Lee, Jae-Wook;Revanasiddappa, M.;Raghavendra, S.C.;Khasim, S.;Vishnuvardhan, T.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1104-1108
    • /
    • 2007
  • Conducting Polypyrrole-lead titanate (PPy/PbTiO3) composites have been prepared by in situ deposition technique by placing different wt.% of fine grade powder of PbTiO3 (10, 20, 30, 40, and 50%) during polymerization of pyrrole. The composites formed were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA), and these data indicate that PbTiO3 particles are dominating with an increase in crystallinity as well as thermal stability of the composites. The results on the low frequency dielectric studies which are obtained in the form of pressed pellet state are interpreted in terms of Maxwell Wagner polarization, which are responsible for the dielectric relaxation mechanism and frequency dependence of conductivity.