DOI QR코드

DOI QR Code

가압소결로 제조된 YSZ-30 vol.% WC 복합체 세라믹스의 상형성 거동과 기계적 특성

Phase Formation and Mechanical Property of YSZ-30 vol.% WC Composite Ceramics Fabricated by Hot Pressing

  • 김진권 (한국세라믹기술원 이천분원 엔지니어링소재센터) ;
  • 최재형 (한국세라믹기술원 이천분원 엔지니어링소재센터) ;
  • 남산 (고려대학교 신소재공학과) ;
  • 류성수 (한국세라믹기술원 이천분원 엔지니어링소재센터) ;
  • 김성원 (한국세라믹기술원 이천분원 엔지니어링소재센터)
  • Jin-Kwon Kim (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jae-Hyeong Choi (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Nahm Sahn (Department of Materials Science and Engineering, Korea University) ;
  • Sung-Soo Ryu (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Seongwon Kim (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2023.10.13
  • 심사 : 2023.10.26
  • 발행 : 2023.10.28

초록

YSZ (Y2O3-stabilized zirconia)-based ceramics have excellent mechanical properties, such as high strength and wear resistance. In the application, YSZ is utilized in the bead mill, a fine-grinding process. YSZ-based parts, such as the rotor and pin, can be easily damaged by continuous application with high rpm in the bead mill process. In that case, adding WC particles improves the tribological and mechanical properties. YSZ-30 vol.% WC composite ceramics are manufactured via hot pressing under different pressures (10/30/60 MPa). The hot-pressed composite ceramics measure the physical properties, such as porosity and bulk density values. In addition, the phase formation of these composite ceramics is analyzed and discussed with those of physical properties. For the increased applied pressure of hot pressing, the tetragonality of YSZ and the crystallinity of WC are enhanced. The mechanical properties indicate an improved tendency with the increase in the applied pressure of hot pressing.

키워드

과제정보

This study was supported by the Technology Innovation Program [grant number 20011007; Development of highly tough ceramic parts of 30 ㎛ bead mill system] funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea).

참고문헌

  1. F. Riley: Structural Ceramics, Cambridge University Press, Cambridge, (2009) 313.
  2. B. Basu and K. Balani: Advanced Structural Ceramics, John Wiley & Sons, Inc., New Jersey, (2009) 175.
  3. M. W. Barsoum: Fundamentals of Ceramics, Taylor & Francis Group, New York, (2003) 383.
  4. O. Vasylkiv, Y. Sakka and V. V. Skorokhod: Mater. Trans., 44 (2003) 2235.
  5. J. H. Choi, J. Y. Choi and S. Kim: J. Powder Mater., 28 (2021) 381.
  6. M. S. Nam, J. H. Choi, S. Nahm and S. Kim: J. Powder Mater., 29 (2022) 424.
  7. B. Basu, J. Vleugels and O. V. Biest: J. Alloys Compos., 372 (2004) 278.
  8. D. Jiang, O. V. Biest and J. Vleugels: J. Eur. Ceram. Soc., 27 (2007) 1247.
  9. M. Grigoriev, N. Kotelnikov, S. Buyakova and S Kulkov: Mater. Sci. Eng., 116 (2016) 012002.
  10. J. H. Choi, M. S. Nam, S. S. Ryu, I. H. Jung, S. Nahm and S. Kim: Ceram. Int., 49 (2023) 13414.
  11. B. Basu, T. Venkateswaran and D.-Y. Kim: J. Am. Ceram. Soc., 89 (2006) 2405.
  12. N. unal, F. Kern, M. L. Ovecoglu and R. Gadowa: J. Eur. Ceram. Soc., 31 (2011) 2267.
  13. Z. Pedzich: Tungsten Carbide as an Reinforcement in Structural Oxide-Matrix Composites, in: K. Liu (Eds.), Tungsten Carbide: Processing and Applications, IntechOpen, UK, (2012) 81.
  14. S. Huang, K. Vanmeensel, O.V. Biest and J. Vleugels: Mater. Sci. Eng. A, 527 (2010) 584.
  15. P. Angerer, E. Neubauer, L. G. Yu and K. A. Khor: Int. J. Refract. Met. Hard Mater., 25 (2007) 280.
  16. R. Yamanoglu, I. Daoud and E. A. Olevsky: Powder Metall., 61 (2018) 178.
  17. M. N. Rahaman: Ceramic Processing and Sintering, Marcel Dekker, Inc., New York, (1995).
  18. J. Chevalier, L. Gremillard, A. V. Virkar and D. R. Clarke: J. Am. Ceram. Soc., 92 (2009) 1901.
  19. F. J. Paneto, J. L. Pereira, J. O. Lima, E. J. Jesus, L. A. Silva, E. S. Lima, R. F. Cabral and C. Santos: Int. J. Refract. Met. Hard Mater., 48 (2015) 365.