• Title/Summary/Keyword: precast concrete frame building

Search Result 48, Processing Time 0.023 seconds

A study on the economic analysis of high-rise residential-commercial building that is made by precast concrete (초고층 주상복합 프리캐스트 콘크리트 구조물의 경제성 분석에 관한 연구)

  • Kim, Bum-Ki;Suk, Sung-Joon;Lee, Ung-Kyun;An, Sung-Hoon;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.1 s.15
    • /
    • pp.89-96
    • /
    • 2005
  • The increase of hish-rise residential-commercial buildings is required to cut down a term of works and the cost of construction. Reinforced concrete structures and steel framed reinforcement concrete that are commonly used have the difficulty in reducing them. Therefore, the purpose of this study is to propose a new precast concrete complex system and to analyze its economical feasibility. The economic analysis is performed through comparing the cost of a high-rise reinforced building that was already constructed with that of the new proposed precast concrete system, which is limited to structural frame work of typical floors. This study shows that the proposed precast concrete complex system is economical. Further research should be directed at including the influence of a term of works.

Performance Analysis of SMART Frame Applied to Logistics Buildings (물류시설에 SMART Frame 적용시 효용성 분석)

  • Son, Seung-Hyun;Kim, Ki-Ho;Lee, Jun-Ah;Kim, Sun-kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.14-15
    • /
    • 2018
  • Logistics facilities are characterized by wide spans and high flooring, most of which are constructed with PC (Precast Concrete) methods to meet a wide range of commercial and industrial needs. However, the PC structure is a pin joint design, and the construction cost is increased due to the restrictions caused by the installation process, and the construction period is lengthened. In order to solve the above problem, SMART Frame, which is a structural system similar to the steel frame structure, was developed by embedding a steel frame at both ends of the PC. The purpose of this study is to analyze the erection time reduction effect of steel connected precast concrete components (SMART frames) for long span and heavy loaded logistics buildings compared to existing PC frames. For this study, a logistics building constructed with pin joint PC components is selected as a case. The result is compared with the existing PC frame to confirm the erection time reduction effect.

  • PDF

Writing ADM Network Diagram of Frame Work for the Precast Concrete Public Apartment Building Construction Management (보-기둥구조 PC공동주택 시공관리를 위한 골조공사 ADM공정표 작성)

  • Kim, Ki-Ho;Kim, MIn-Jun;Kim, Jin-Won;Lee, Dong-Gun;Sohn, Jeong-Rak;Lee, Bum-Sik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.221-222
    • /
    • 2022
  • In this study, the work flow of the construction process was analyzed based on construction monitoring for a building of the middle size beam-column system Precast Concrete(PC) apartment building supplied by LH, and the Arrow Daigram Method(ADM) network diagram of its construction was written. The results of this study are judged to be able to improve productivity by using the PC structure apartment building construction plan to calculate a reasonable construction period and prepare a process management method for the PC structure frame construction.

  • PDF

An Analysis of Influence Factors on Insitu-production and Installation Schedule of Composite Precast Concrete Members (합성 PC 부재의 현장생산 및 설치 공정계획의 영향요소 분석)

  • Lim, Chaeyeon;Kim, Sun Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.176-177
    • /
    • 2013
  • The composite PC rahmen structure, called Green Frame, allows the main structural members such as PC column and beam to be produced on the site, resulting in a reduction of PC member transportation cost and the margin of PC plant (operation cost and profit), making it more economic than the bearing wall structure. To apply the Green Frame to practice, not only installation but also insitu-production process should be considered. Therefore, this study analyse the influence factors on insitu-production and installation schedule of composite precast concrete members. The results shall be used as basic criteria on the planning of insitu-production and installation of Green Frame.

  • PDF

Seismic performance assessment of the precast concrete buildings using FEMA P-695 methodology

  • Adibi, Mahdi;Talebkhah, Roozbeh
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.55-67
    • /
    • 2022
  • The precast reinforced concrete frame system is a method for industrialization of construction. However, the seismic performance factor of this structural system is not explicitly clarified in some existing building codes. In this paper, the seismic performance factor for the existing precast concrete building frame systems with cast-in-situ reinforced shear walls were evaluated. Nonlinear behavior of the precast beam-column joints and cast-in-situ reinforced shear walls were considered in the modeling of the structures. The ATC-19's coefficient method was used for calculating the seismic performance factor and the FEMA P-695's approach was adopted for evaluating the accuracy of the computed seismic performance factor. The results showed that the over-strength factor varies from 2 to 2.63 and the seismic performance factor (R factor) varies from 5.1 to 8.95 concerning the height of the structure. Also, it was proved that all of the examined buildings have adequate safety against the collapse at the MCE level of earthquake, so the validity of R factors was confirmed. The obtained incremental dynamic analysis (IDA) results indicated that the minimum adjusted collapse margin ratio (ACMR) of the precast buildings representing the seismic vulnerability of the structures approximately equaled to 2.7, and pass the requirements of FEMA P-695.

A basic study of steel-joint connection method of composite precast concrete members (합성 PC부재의 Steel-joint Connection Method 개발 기초연구)

  • Kim, Geun-Ho;Lee, Dong-Hoon;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.10-11
    • /
    • 2013
  • Green Frame is a column-beam system formed by composite precast concrete column and beam connected with steel buried in both members. During the installation of Green columns, the columns of Green Frame, covering 3 floors per each piece and beams, the eccentricity can be observed due to the construction error and the weight of beam itself. Such eccentricity may have a little influence on a single frame, yet, it can develop critical issues to the installation of subsequent beams or beams on the upper floors in the context of a building as a whole that has multiple frames. These issues lead to delay in frame installation, decrease of productivity and increase of cost, etc. Therefore, this study presents a steel-joint connection method in order to solve the issues. The steel-joint connection method exists on slope plane and reinforcing plate in steel frame buried in composite PC members. Through this method, the issues can be resolved without requiring additional equipment or manpower.

  • PDF

Estimation of production length of PC beam by using splice length of bottom rebar (하부철근 이음길이에 따른 PC 보 제작 길이 산정)

  • Sung, Soojin;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.84-85
    • /
    • 2014
  • Green frame is column-beam structure composed of precast concrete members. Based on Revision of Structural Concrete Design Code, the bottom rebar of beam shall be extend at least 150mm into the support member. However, if the bottom rebar extend to satisfy Revision of Structural Concrete Design Code, the installation fo beam is impossible due to interference between the columns and beams. Thus, the aim of this study is estimation of production length of precast concrete beam by using splice length of bottom rebar. In this study to solve this problem, lap splice were used on the join. This study was calculated length of the reinforcement by the diameter. According to the length of the rebar, the production length of beam concrete was calculated. The results of this study will satisfy the Revision of Structural Concrete Design Code about column-beam connection when green frame will be applied.

  • PDF

Absolute Comparison of Construction Periods between Precast Concrete and Reinforced Concrete Apartment Buildings (PC 및 RC공동주택 골조공사에 대한 공사기간 절대비교)

  • Kim, Ki-Ho;Lee, Bum-Sik;Kim, Jin-Won;Kim, Yeon-Ho;Lee, Dong-Gun;Sohn, Jeong-Rak
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.293-294
    • /
    • 2023
  • In accordance with recent changes in construction trends, interest in introducing the OSC, such as the Precast Concrete, is increasing in apartment buildings. In domestic studies, studies on the prediction of the construction period of PC apartment buildings through simulation have been conducted, but there is no study on the comparison of the construction period according to the actual construction of Precast Concrete(PC) and Reinforced Concrete(RC). Therefore, this study seeks to grasp the technology of the current PC construction method and to secure the original technology of project management through comparison of the absolute time of frame construction for PC and RC buildings composed of the same plane.

  • PDF

Requirement analysis for Development of the Bolt-type Rebar Coupler (볼트 접합형 철근 이음장치 개발을 위한 요구조건 분석)

  • Lim, Chae-Yeon;Joo, Jin-Kyu;Lee, Goon-Jae;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.169-170
    • /
    • 2011
  • In the connection of green frame, the bottom rebar of the precast concrete beam needs joint or anchorage to ensure structural integrity. However, given the characteristics of composite precast concrete joint, enough length over which rebar can be anchored or lap-spliced is not secured. In addition, due to issues with constructability, cost or quality, it is difficult to apply welding or mechanical connection techniques. Therefore, this study analyze the requirement for a bolt-type rebar coupler as a solution for the coupling issue between the lower rebars of green frame beam. The requirement for bolt-type rebar coupler proposed herein will provide basic data for development studies of the rebar coupler.

  • PDF