• Title/Summary/Keyword: precast columns

Search Result 87, Processing Time 0.196 seconds

Effects of Design Parameters on Structural Performance of Precast Piers with Bonded Prestressing Steels (부착 긴장재를 가진 조립식 교각 설계변수의 구조성능에 미치는 영향)

  • Shim, Chang-Su;Yoon, Jae-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.15-26
    • /
    • 2010
  • Quasi-static tests were conducted to evaluate structural performance of precast piers prestressed by bonded prestressing steels. Combinations of prestressing bars and normal reinforcing bars, embedded steel tubes and prestressing strands were used as continuous steels crossing the joints of a precast pier. Main design parameters were steel ratio, magnitude of prestress force, and section details. Flexural strength and energy dissipation capacity of precast columns with higher steel ratio showed better performance due to continuous steels after opening of the joints. Precast piers with embedded members showed stable behavior after reaching maximum loads resulting in higher displacement ductility and energy dissipation capacity increased as the introduced prestress increased. Self-centering behavior at early stages and stress increase of confining reinforcements were observed from highly prestressed columns. Combination of prestressing steels and normal reinforcing bars should be used in design to prevent rapid strength degradation after reaching the maximum load.

Performance of Precast Composite Piers for Fast Construction (급속시공형 프리캐스트 합성교각의 성능)

  • Shim, Chang-Su;Chung, Young-Soo;Yoon, Jae-Young;Park, Ji-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.221-224
    • /
    • 2008
  • Recently various types of prefabricated pier has been developed. In this paper, prefabricated composite columns with core steel elements embedded in concrete were proposed, which has no prestressing. Based on the previous research on composite columns with low steel ratio, the column were designed. A simple bolt connection detail between a footing and a pier element were also suggested. In order to investigate the seismic performance of the composite columns, several tests on concrete encased composite columns, which are prefabricated, were performed. Quasi-static tests were carried out and their performance was evaluated and compared with the results from the tests on CIP composite piers. In the case of precast piers, the end part of the pier needs to be carefully reinforced and related recommendations on details were derived.

  • PDF

An Experimental Study of Precast Concrete Alters Cement Types of High-Strength Concrete (시멘트종류를 변화시킨 프리캐스트 고강도 콘크리트의 실험적 연구 - 압축강도특성을 중심으로 -)

  • Park, Heung-Lee;Ki, Jun-Do;Kim, Sung-Jin;Lee, Hoi-Keun;Park, Byung-Keun;Jung, Jang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.65-68
    • /
    • 2009
  • Recently, as architectural concrete structures become high-rise and megastructured, concrete become high-strengthened and, by ensuring products of more stability, and rationalization of construction are required.large cross-sectional precast concrete members such as columns show large temperature increase in manufacturing process not only by external heating but also by concrete itself's hydration heating. Therefore, it is expected that specimen for management to predict strength and compression strength of precast concrete member shows different strength characteristics. Concerning this, in order to suggest strength characteristics of high strength mass concrete suitable for precast concrete application, this study comprises the inclusive investigations on the relations between core strength and the strength characteristics per member cross-section dimensional value and per water-bonding material ratio value.

  • PDF

An Experimental Study of Precast concrete Alters Cement Types of High-Strength Concrete (시멘트종류를 변화시킨 프리캐스트 고강도 콘크리트의 실험적 연구 - 수화열 온도특성을 중심으로 -)

  • Park, Heung-Lee;Kim, Sung-Jin;Paik, Min-Su;Lee, Seung-Hoon;Park, Byung-Keun;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.119-122
    • /
    • 2009
  • As architectures have recently become high-risers and mega-structured, stable high strength products have been ensured. Accordingly, use of precast concrete accouplement has been increased in order to facilitate air compression and rationalize construction. Since not only external heating but a1so internal temperature rise caused by the accumulation of cement hydration heat in manufacturing process, precast concrete members with large cross-section used for high-rise mega-structure's columns and beams may exhibit different temperature history compared to the precast concrete members for wall and sub-floor with relatively small cross-sections. Therefore, this study aims to elucidate the characteristics of temperature history of mass concrete members cast with high-strength concrete fur precast concrete application. In this study, large cross-sectional precast concrete mock-up, unit cement quantity, and temperature histories in manufacturing precast concrete member under different curing condition were inclusively investigated.

  • PDF

An Experimetal Study on Strength Characteristics of Mass Concrete Cast with High-Strength Concrete for Precast Application. (프리캐스트 콘크리트 적용을 위한 고강도 매스 콘크리트 부재의 강도 특성에 관한 실험적 연구)

  • Park, Jo-Hyun;Kim, Sung-Jin;Paik, Min-Su;Lee, Seung-Hoon;Park, Byung-Keun;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.49-52
    • /
    • 2007
  • Recently, as architectural concrete structures become high-rise and megastructured, concrete become high-strengthened and, by ensuring products of more stability, air compression and rationalization of construction are required. In general, product management test of precast concrete member, specimen for management cured in the same condition with precast concrete member is substitutively used for strength test. However, large cross-sectional precast concrete members such as columns show large temperature increase in manufacturing process not only by external heating but also by concrete itself's hydration heating. Therefore, it is expected that specimen for management to predict strength and compression strength of precast concrete member shows different temperature history and strength characteristics. Concerning this, in order to suggest temperature history and strength characteristics of high strength mass concrete suitable for precast concrete application, this study comprises the inclusive investigations on the relations between management specimen with similar temperature history and core strength, and the strength characteristics per member cross-section dimensional value and per water-bonding material ratio value.

  • PDF

A basic study of steel-joint connection method of composite precast concrete members (합성 PC부재의 Steel-joint Connection Method 개발 기초연구)

  • Kim, Geun-Ho;Lee, Dong-Hoon;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.10-11
    • /
    • 2013
  • Green Frame is a column-beam system formed by composite precast concrete column and beam connected with steel buried in both members. During the installation of Green columns, the columns of Green Frame, covering 3 floors per each piece and beams, the eccentricity can be observed due to the construction error and the weight of beam itself. Such eccentricity may have a little influence on a single frame, yet, it can develop critical issues to the installation of subsequent beams or beams on the upper floors in the context of a building as a whole that has multiple frames. These issues lead to delay in frame installation, decrease of productivity and increase of cost, etc. Therefore, this study presents a steel-joint connection method in order to solve the issues. The steel-joint connection method exists on slope plane and reinforcing plate in steel frame buried in composite PC members. Through this method, the issues can be resolved without requiring additional equipment or manpower.

  • PDF

Development of Precast Hollow Concrete Columns with Non-Shrink Mortar Grouting Type Splice Sleeve (무수축 모르타르 충진형 슬리브를 사용한 중공 프리캐스트 교각 개발)

  • Cho, Jae-Young;Lee, Young-Ho;Kim, Do-Hak;Park, Jong-Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.215-225
    • /
    • 2011
  • In general, the precast columns can obtain its homogeneous quality as they are produced in a factory with a hollow concrete block type by using high strength concrete, so that they can generate the reduction of dead load. Such a method of precast hollow concrete columns is already implemented in USA and Japan and used for connecting between blocks which use PC tendons. However, it is inevitable to have uneconomical construction with excessive cost in early stage when PC tendons are used. This study aims to develop an economical precast column with high quality and constructability which consists of only splice sleeve and general reinforcing bar without using PC tendons in order to reduce the construction period and cost. To achieve this goal, this study tested the performance of total 5 minimized models in the experiment with the variables such as hollowness, diameter of main reinforcement bar and cross-sectional size for the cross section of precast column by using grouting type splice sleeve which is a new type joint rebar. And it also verified the performance of column in the experiment for a large-sized model in order to overview its applicability by excluding large scale effect.

Development of Creative Design and Construction Methods of Bridge Piers using 3D Model (3차원 모델 기반의 미적 교각 설계 및 시공 기술 개발)

  • Lee, Sang-Yong;Dong, Ngoc Son;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.5 no.2
    • /
    • pp.12-18
    • /
    • 2015
  • Bridge piers typically have circular or rectangular shapes without decorative design. Prefabrication for accelerated construction has been widely adopted in bridge structures. Cost for steel formwork is a main restriction of creative irregular shapes. 3D modelling techniques allow creative design of columns and 3D printing provides possibility to minimize the fabrication cost. In this paper, 3D design process of bridge piers was suggested by converting 2D picture into 3D decorative shape. Formwork design using 3D printed panels was also proposed and mock-up tests were conducted. Precast columns need accurate geometry control from fabrication to assembly. Laser scanning and geometry control devices were adopted. Through the digitalized process of design, fabrication and assembly, creative design of structures can be realized in reasonable cost range.

An experimental study on different socket base connections under cyclic loading

  • Pul, Selim;Husem, Metin;Arslan, Mehmet Emin;Hamzacebi, Sertac
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.377-387
    • /
    • 2014
  • This paper presents an experimental study on socket base connections of precast reinforced concrete columns. The main purpose of this study is to determine socket base connection which has the closest behavior to monolithic casted column-base joints. For this purpose, six specimens having different column-socket base connection details were tested under cyclic loading. For each test, strength, stiffness, ductility and drift ratios of the specimens were determined. Test results indicated that a suggested connection type is 10%-30% stronger than the other type of connections under lateral loading. The welded connection (PC-5) had better lateral load carrying capacity and ductility. On the other hand, performance of standard connection (PC-1) which is commonly used in construction was weaker than other connections. Thus, decision of connection type should be referred not only performance but also applicability.

Seismic behavior of post-tensioned precast reinforced concrete beam-to-column connections

  • Cheng, Chin-Tung
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.525-544
    • /
    • 2008
  • In this research, the self-centering effect in precast and prestressed reinforced concrete structures was investigated experimentally. The reinforced concrete beams and columns were precast and connected by post-tensioning tendons passing through the center of the beams as well as the panel zone of the connections. Three beam-to-interior-column connections were constructed to investigate parameters such as beam to column interfaces (steel on steel or plastic on plastic), energy dissipating devices (unbonded buckling restrained steel bars or steel angles) and the spacing of hoops in the panel zone. In addition to the self-centering effect, the shear strength in the panel zone of interior column connections was experimentally and theoretically evaluated, since the panel zone designed by current code provisions may not be conservative enough to resist the panel shear increased by the post-tensioning force.