• Title/Summary/Keyword: practical surface

Search Result 1,223, Processing Time 0.031 seconds

Improved Surface Morphologies of Printed Carbon Nanotubes by Heat Treatment and Their Field Emission Properties

  • Lee, Hyeon-Jae;Lee, Yang-Doo;Cho, Woo-Sung;Kim, Jai-Kyeong;Lee, Yun-Hi;Hwang, Sung-Woo;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.22-25
    • /
    • 2006
  • This paper presents heating process for obtaining standing carbon nanotube emitters to improve field-emission properties from the screen-printed multiwalled carbon nanotube (MWCNT) films. In an atmosphere with optimum combination of nitrogen and air for heat treatment of CNT films, the CNT emitters can be made to protrude from the surface. This allows for high emission current and the formation of very uniform emission sites without special surface treatment. The morphological change of the CNT film by this technique has eliminated additional processing steps, such as surface treatment which may result in secondary contamination and damage to the film. Despite its simplicity the process provides high reproducibility in emission current density which makes the films suitable for practical applications.

Comparison of Water Infiltration and Retention Capacity in a Forest Soil of Different Surface Depression Patterns (지면 굴곡에 따른 산림 토양의 물 침투와 저류능력 비교)

  • Cho, Yoori;Kim, Jongho;Lee, Dowon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.1
    • /
    • pp.108-111
    • /
    • 2018
  • Increasing soil surface roughness can be effective in enhancing infiltration of rainfall and depression storage capacity of forest soil and reducing surface run-off. In this study, a forest slope with hemispherical depressions shows greater infiltration of water, whereas depression storage capacity is higher in soil with depressions perpendicular to a water flow pathway. Soil pitting or forming surface depressions can be used as a countermeasure after forest fires and a practical way to reduce drought stress of forest soil.

Hierarchical Nanostructure on Glass for Self Cleaning and Antireflective Properties

  • Xiong, Junjie;Das, Sachindra Nath;Kar, Jyoti Prakash;Choi, Ji-Hyuk;Myoung, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.24.1-24.1
    • /
    • 2010
  • In practical operation, the exposed surfaces may get dirty thus degrade the performance of devices. So the combination of self cleaning and antireflection is very desirable for use in outdoor photovoltaic and displaying devices, self cleaning windows and car windshields. For the purpose of self cleaning, the surface needs to be either superhydrophobic or superhydrophilic. However, in practice AR in the visible region and self cleaning are a pair of competitive properties. To satisfy the requirements for superhydrophobic or superhydrophilic surfaces, high surface roughness is required. But it usually cause severely light scattering. Photo-responsive coatings (TiO2, ZnO etc.) can lead to superhydrophilic. However, the refractive indices are high. Thus for porous structure, controlling pore size in the underwavelength scale to reduce the light scattering is very crucial for highly transparent and self cleaning antireflection coating. Herein, we demonstrate a simple method to make high performance broadband antireflection layer on the glass surface, by "carving" the surface by hot alkali solution. Etched glass has superhydrophilic surface. By chemical modification, it turns to superhydrophobic. Enhanced transparency (up to 97%) in a broad wavelength range was obtained by short time etching. Also antifogging effect has been demonstrated, which may offer advantage for devices working at high humidity environment or underwater. Compositional dependence of the properties was observed by comparing three different commercially available glasses.

  • PDF

Improvement of Surface Hardness of 2205 Duplex Stainless Steel by Laser Shock Peening and Observations of Surface Changes (레이저 쇼크 피닝에 의한 2205 듀플렉스 스테인리스강의 표면 경도 향상과 표면 변화 관찰)

  • Lim, H.T.;Jeong, H.M.;Kim, P.K.;Jeong, Sung-Ho
    • Laser Solutions
    • /
    • v.14 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • This work reports the results for laser shock peening of duplex stainless steel (22% Chromium - 5% Nickel) using a pulsed Nd:YAG laser (wavelength = 532nm, pulse width = 8ns). for the application to high-capacity pumps for seawater desalination plants. By properly selecting the process parameters such as laser intensity of 10GW/$cm^2$, laser pulse density of 75pulse/$mm^2$, and $100{\mu}m$ thick aluminum foil as an absorbent coating layer, the surface hardness of duplex stainless steel could be enhanced by 26%, from 256HV to 323HV with little changes in surface morphology and roughness. The depth of laser shock peened layer was measured to be around 2mm. The large enhancement of surface hardness is considered to have high practical importance in minimizing abrasive and corrosive deterioration of pump parts.

  • PDF

R&D Trend on Surface Treatment of Magnesium Alloys (마그네슘합금의 표면처리에 관한 연구개발 동향)

  • Shim, Jae-Dong;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.72-80
    • /
    • 2013
  • Recently, consumption of magnesium alloys has increased especially in the 3C (computer, communication, camera) and automobile industries. The structural application of magnesium alloys has many advantages due to their low densities, high specific strength, excellent damping and anti-eletromagnetic properties, and easy recycling. However, practical application of these alloys has been limited to narrow uses of mild condition, because they are inferior in corrosion resistance and wear resistance due to their high chemical reactivity and low hardness. Various wet and dry processes are being used or are under development to enhance alloy surface properties. Various conversion coating and anodizing methods have been developed in a view of eco-friendly concept. The conventional technologies, such as diffusion coating, sol-gel coating, hydrothermal treatment, and organic coating, are expected to be newly applicable to magnesium alloys. Surface treatments for metallic luster or coloring are suggested using the control of the micro roughness. This report reviews the recent R&D trends and achievements in surface treatment technologies for magnesium alloys.

RECURRENT NEURAL NETWORKS -What Do They Learn and How\ulcorner-

  • Uchikawa, Yoshiki;Takase, Haruhiko;Watanabe, Tatsumi;Gouhara, Kazutoshi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1005-1008
    • /
    • 1993
  • Supervised learnmg 01 recurrent neural networks (RNNs) is discussed. First, we review the present state of art, featuring their major properties in contrast of those of the multilayer neural networks. Then, we concisely describe one of the most practical learning algorithms, i.e. backpropagation through time. Revising the basic formulation of the learning algorithms, we derive a general formula to solve for the exact solution(s) of the whole connection weights w of RNNs. On this basis we introduce a novel interpretation of the supervised learning. Namely, we define a multidimensional Euclidean space, by assigning the cost function E(w) and every component of w to each coordinate axis. Since E=E(w) turns up as a hyper surface in this space, we refer to the surface as learning surface. We see that topological features of the learning surface are valleys and hills. Finally, after explicating that the numerical procedures of learning are equivalent to descending slopes of the learning surface along the steepest gradient, we show that a minimal value of E(w) is the intersection of curved valleys.

  • PDF

A 4-axis NC Lettering System for the Side-wall of the Automobile Tire (타이어 사이드판의 문자 가공을 위한 4축 가공 시스템)

  • Lee, Cheol-Soo;Park, Gwang-Ryeol
    • IE interfaces
    • /
    • v.11 no.2
    • /
    • pp.65-78
    • /
    • 1998
  • The letters of the automobile tire are usually engraved on the side-wall. The shape of the side-wall is a sculptured surface generated by the rotational sweeping of a profile curve. The letters laid on the side-wall are usually designed by a 2-dimensional CAD. It is impossible to machine the letters on the surface accurately by 3-axis NC machining, because the axis of cutter should be tilted to align with the normal vector of the surface. In this case. the degree of freedom for the machine is at least four. This paper describes an idea for tool path generation of a 4-axis machine by using the 2-dimensional CAD data of the letters and the surface of the side-wall. This study includes the following procedures; (1) measuring the profile of the side-wall surface and curve-fitting of the measured points. (2) the 'non-parallel projection' of the letters on the side-wall, and (3) an inverse kinematics of the 4-axis lettering machine. Procedures in this paper are programmed in C-language on Windows95 environment. With a PC based CNC controller and a 4-axis lettering machine. these are tested sucessfully for the practical use.

  • PDF

Effect of Hydrophobizing Method on Corrosion Resistance of Magnesium Alloy with Plasma Electrolytic Oxidation (소수성 처리 방법에 따른 플라즈마 전해 산화 처리된 마그네슘 합금의 내식성)

  • Joo, Jaehoon;Kim, Donghyun;Jeong, Chanyoung;Lee, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.2
    • /
    • pp.96-102
    • /
    • 2019
  • Magnesium and its alloys are prone to be corroded, thus surface treatments improving corrosion resistance are always required for practical applications. As a surface treatment of magnesium alloys, plasma electrolytic oxidation (PEO), creating porous stable oxide layer by a high voltage discharge in electrolyte, enhances the corrosion resistance. However, due to superhydrophilicity of the porous oxide layer, which easily allow the penetration of corrosive media toward magnesium alloys substrate, post-treatments inhibiting the transfer of corrosive media in porous oxide layer are required. In this work, we employed a hydrophobizing method to enhance the corrosion resistance of PEO treated Mg alloy. Three types of hydrophobizing techniques were used for PEO layer. Thin Teflon coating with solvent evaporation, self-assembled monolayer (SAM) coating of octadecyltrichlorosilane (OTS) based on solution method and SAM coating of perfluorodecyltrichlorosilane (FDTS) based on vacuum method significantly enhances corrosion resistance of PEO treated Mg alloy with reducing the contact of water on the surface. In particular, the vacuum based FDTS coating on PEO layer shows the most effective hydrophobicity with the highest corrosion resistance.

Effect of the Amplitude in Ultrasonic Nano-crystalline Surface Modification on the Corrosion Properties of Alloy 600

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.196-205
    • /
    • 2019
  • Surface modification techniques are known to improve SCC by adding large compressive residual stresses to metal surfaces. This surface modification technology is attracting attention because it is an economical and practical technology compared to the maintenance method of existing nuclear power plants. Surface modification techniques include laser, water jet and ultrasonic peening, pinning and ultrasonic Nano-crystal surface modification (UNSM). The focus of this study was on the effect of ultrasonic amplitude in UNSM treatment on the corrosion properties of Alloy 600. A microstructure analysis was conducted using an optical microscope (OM), scanning electron microscope (SEM) and electron backscattering diffraction (EBSD). A cyclic polarization test and AC-impedance measurement were both used to analyze the corrosion properties. UNSM treatment influences the corrosion resistance of Alloy 600 depending on its amplitude. Below the critical amplitude value, the pitting corrosion properties are improved by grain refinement and compressive residual stress, but above the critical amplitude value, crevices are formed by the formation of overlapped waves. These crevices act as corrosion initiators, reducing pitting corrosion resistance.

Label-free and sensitive detection of purine catabolites in complex solutions by surface-enhanced raman spectroscopy

  • Davaa-Ochir, Batmend;Ansah, Iris Baffour;Park, Sung Gyu;Kim, Dong-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.342-352
    • /
    • 2022
  • Purine catabolite screening enables reliable diagnosis of certain diseases. In this regard, the development of a facile detection strategy with high sensitivity and selectivity is demanded for point-of-care applications. In this work, the simultaneous detection of uric acid (UA), xanthine (XA), and hypoxanthine (HX) was carried out as model purine catabolites by surface-enhanced Raman Spectroscopy (SERS). The detection assay was conducted by employing high-aspect ratio Au nanopillar substrates coupled with in-situ Au electrodeposition on the substrates. The additional modification of the Au nanopillar substrates via electrodeposition was found to be an effective method to encapsulate molecules in solution into nanogaps of growing Au films that increase metal-molecule contact and improve substrate's sensitivity and selectivity. In complex solutions, the approach facilitated ternary identification of UA, XA, and HX down to concentration limits of 4.33 𝜇M, 0.71 𝜇M, and 0.22 𝜇M, respectively, which are comparable to their existing levels in normal human physiology. These results demonstrate that the proposed platform is reliable for practical point-of-care analysis of biofluids where solution matrix effects greatly reduce selectivity and sensitivity for rapid on-site disease diagnosis.