DOI QR코드

DOI QR Code

Effect of the Amplitude in Ultrasonic Nano-crystalline Surface Modification on the Corrosion Properties of Alloy 600

  • Kim, Ki Tae (Research Center for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, Young Sik (Research Center for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
  • Received : 2019.10.22
  • Accepted : 2019.10.31
  • Published : 2019.10.31

Abstract

Surface modification techniques are known to improve SCC by adding large compressive residual stresses to metal surfaces. This surface modification technology is attracting attention because it is an economical and practical technology compared to the maintenance method of existing nuclear power plants. Surface modification techniques include laser, water jet and ultrasonic peening, pinning and ultrasonic Nano-crystal surface modification (UNSM). The focus of this study was on the effect of ultrasonic amplitude in UNSM treatment on the corrosion properties of Alloy 600. A microstructure analysis was conducted using an optical microscope (OM), scanning electron microscope (SEM) and electron backscattering diffraction (EBSD). A cyclic polarization test and AC-impedance measurement were both used to analyze the corrosion properties. UNSM treatment influences the corrosion resistance of Alloy 600 depending on its amplitude. Below the critical amplitude value, the pitting corrosion properties are improved by grain refinement and compressive residual stress, but above the critical amplitude value, crevices are formed by the formation of overlapped waves. These crevices act as corrosion initiators, reducing pitting corrosion resistance.

Keywords

References

  1. P. Crooker and T. Lian, Materials Reliability Program: Technical Basis for Primary Water Stress Corrosion Cracking Mitigation by Surface Stress Improvement, MRP-267, Revision 2, EPRI, Product ID 3002008083 (2016).
  2. P. Crooker, Materials Reliability Program: Topical Report for Primary Water Stress Corrosion Cracking Mitigation by Surface Stress Improvement (MRP-335, Revision 3-A), EPRI, Product ID 3002009241 (2016).
  3. J. Zhu, X. Jiao, C. Zhou, and H. Gao, Enrgy. Proced., 16, 153 (2012). https://doi.org/10.1016/j.egypro.2012.01.026
  4. J.-D. Kim and Y. SANO, J. Weld. Join., 34, 13 (2016). https://doi.org/10.5781/JWJ.2016.34.5.13
  5. H. Soyama, J. Mater. Process. Technol., 269, 65 (2019). https://doi.org/10.1016/j.jmatprotec.2019.01.030
  6. M. Ijiri and T. Yoshimura, Heliyon, 4, e00747 (2018). https://doi.org/10.1016/j.heliyon.2018.e00747
  7. A. Amanov and R. Umarov, Appl. Surf. Sci., 441, 515 (2018). https://doi.org/10.1016/j.apsusc.2018.01.293
  8. D. Feron, Nuclear corrosion science and engineering, 1st ed., p. 484, Woodhead Publishing, Cambridge (2012).
  9. W. T. Tsai, C. S. Chang, and J. T. Lee, Corros. Sci., 50, 98 (1994). https://doi.org/10.5006/1.3293507
  10. W. H. Friske and J. P. Page, J. Mater. Energ. Syst., 1, 20 (1979). https://doi.org/10.1007/BF02833987
  11. O. Badran, N. Kloub, and M. A. Tal, Am. J. Appl. Sci., 5, 1397 (2008). https://doi.org/10.3844/ajassp.2008.1397.1402
  12. A. Telang, A. S. Gill, S. Teysseyre, S. R. Mannava, D. Qian, and V. K. Vasudevan, Corros. Sci., 90, 434 (2015). https://doi.org/10.1016/j.corsci.2014.10.045
  13. J. Lu, H. Qi, K. Luo, M. Luo, and X. Cheng, Corros. Sci., 80, 53 (2014). https://doi.org/10.1016/j.corsci.2013.11.003
  14. D. Karthik and S. J. Swaroop, J. Alloys Compd., 694, 1309 (2017). https://doi.org/10.1016/j.jallcom.2016.10.093
  15. P. Peyre, X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro, G. Beranger, and C. Lemaitre, Mat. Sci. Eng. A-Struct., 280, 294 (2000). https://doi.org/10.1016/S0921-5093(99)00698-X
  16. J. Lu, K. Luo, D. Yang, X. Cheng, J. Hu, F. Dai, H. Qi, L. Zhang, J. Zhong, Q. Wang, and Y. Zhang, Corros. Sci., 60, 145 (2012). https://doi.org/10.1016/j.corsci.2012.03.044
  17. K. Hirano, K. Enomoto, E. Hayashi, and K. Kurosawa, J. Soc. Mater. Sci., 45, 740 (1996). https://doi.org/10.2472/jsms.45.740
  18. M. Ijiri, D. Shimonishi, S. Tani, N. Okada, M. Yamamoto, D. Nakagawa, K. Tanaka, and T. Yoshimura, Int. J. Lightweight Mater. Manufact., 2, 255 (2019). https://doi.org/10.1016/j.ijlmm.2019.02.001
  19. Y. Feng, S. Hu, D. Wang, J. Liu, and C. Zhang, Surf. Eng., 33, 696 (2017). https://doi.org/10.1080/02670844.2016.1212530
  20. B. Ahmad and M. E. Fitzpatrick, Metall. Mater. Trans. A, 46, 1214 (2015). https://doi.org/10.1007/s11661-014-2713-3
  21. Y. He, K. Li, I. S. Cho, C. S. Lee, I. G. Park, J.-I. Song, C.-W. Yang, J-H. Lee, and K. Shin, Appl. Microsc., 45, 155 (2015). https://doi.org/10.9729/AM.2015.45.3.155
  22. A. Cherif, Y. Pyoun, and B. Scholtes, J. Mater. Eng. Perform., 19, 282 (2010). https://doi.org/10.1007/s11665-009-9445-3
  23. C. Ye, A. Telang, A. S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J. M. K. Wiezorek, Z. Zhou, D. Qian, S. R. Mannava, and V. K. Vasudevan, Mater. Sci. Eng. A, 613, 274 (2014). https://doi.org/10.1016/j.msea.2014.06.114
  24. A. Cherif, Y. Pyoun, and B. Scholtes, J. Mater. Eng. Perform., 19, 282 (2010). https://doi.org/10.1007/s11665-009-9445-3
  25. M. K. Khan, Y. J. Liu, Q. Y. Wang, Y. S. Pyun, and R. Kayumov, Fatigue Fract. Eng. Mater. Struct., 39, 427 (2016). https://doi.org/10.1111/ffe.12367
  26. A. Amanova, R. Karimbaeva, E. Malekib, O. Unalc, Y. S. Pyuna, and T. Amanovd, Surf. Coat. Technol., 358, 695 (2019). https://doi.org/10.1016/j.surfcoat.2018.11.100
  27. J. H. Lee, K. T. Kim, Y. S. Pyoun, and Y. S. Kim, Corros. Sci. Tech., 15, 226 (2016). https://doi.org/10.14773/cst.2016.15.5.226
  28. J. H. Lee and Y. S. Kim, Corros. Sci. Tech., 14, 313 (2015). https://doi.org/10.14773/cst.2015.14.6.313
  29. K. T. Kim, J. H. Lee, and Y. S. Kim Materials., 10, 713 (2017). https://doi.org/10.3390/ma10070713
  30. K. T. Kim and Y. S. Kim Materials, 12, 3165 (2019). https://doi.org/10.3390/ma12193165
  31. M.Yasuoka, P. Wang, K. Zhang, Z. Qiu, K. Kusaka, Y. S. Pyoun, and R. Murakami, Surf. Coat. Technol., 218, 93 (2013). https://doi.org/10.1016/j.surfcoat.2012.12.033
  32. S. Li, Z. Ren, Y. Dong, C. Ye, G. Cheng, and H. Cong, J. Electrochem. Soc., 164, C682 (2017). https://doi.org/10.1149/2.1781712jes
  33. S. Luo, L. Zhou, X. Wang, X. Cao, X. Nie, and W. He, Materials, 11, 563 (2018). https://doi.org/10.3390/ma11040563
  34. M. G. Fontana, Corrosion Engineering, 3rd ed., p. 29, Mc-Graw-Hill Book Co., New York (1987).
  35. S. J. Splinter, R. Rofagha, N. S. McIntyre, and U. Erb, Surf. Interface Anal., 24, 181 (1996). https://doi.org/10.1002/(SICI)1096-9918(199603)24:3<181::AID-SIA92>3.0.CO;2-N
  36. K. D. Ralston and N. Birbilis, Corrosion, 66, 075005-1 (2010). https://doi.org/10.5006/1.3462912
  37. G. Palumbo, K. T. Aust, and U. Erb, Mater. Sci. Forum, 225-227, 281 (1996). https://doi.org/10.4028/www.scientific.net/MSF.225-227.281
  38. G. Palumbo, S. J. Thorpe, and K. T. Aust, Scr. Metall. Mater., 24, 1347 (1990). https://doi.org/10.1016/0956-716X(90)90354-J
  39. X. Wang and D. Li, Electrochim. Acta, 47, 3939 (2002). https://doi.org/10.1016/S0013-4686(02)00365-1
  40. X. Wang and D. Li, Wear, 255, 836 (2003). https://doi.org/10.1016/S0043-1648(03)00055-3
  41. T. Wang, J. Yu, and B. Dong, Surf. Coat. Technol., 200, 4777 (2006). https://doi.org/10.1016/j.surfcoat.2005.04.046
  42. K. T. Liu and J. G. Duh, J. Electroanal. Chem., 618, 45 (2008). https://doi.org/10.1016/j.jelechem.2008.02.020
  43. S. Ghosh, G. Dey, R. Dusane, and A. Grover, J. Alloy. Compd., 426, 235 (2006). https://doi.org/10.1016/j.jallcom.2005.12.094
  44. O. Takakuwa and H. Soyama, Adv. Chem. Eng. Sci., 5, 62 (2015). https://doi.org/10.4236/aces.2015.51007
  45. B. Wu, J. Zhang, L. Zhang, Y. S. Pyoun, and R. I. Murakami, Appl. Surf. Sci., 321, 318 (2014). https://doi.org/10.1016/j.apsusc.2014.09.068

Cited by

  1. Review of Residual Stress Impingement Methods to Mitigate Environmental Fracture Susceptibility vol.2, pp.4, 2021, https://doi.org/10.3390/cmd2040031