Fifth IFSA World Congress (1993), 1005- 1008

RECURRENT NEURAL NETWORKS

—What Do They Learn and How?—

Yoshiki UCHIKAWA, Haruhiko TAKASE
Tatsumi WATANABE, and Kazutoshi GOUHARA*

School of Engineering, Nagoya University, Nagoya, 464-01 Japan
*School of Engineering, Chubu University, Kasugai, 487 Japan

Supervised learning of recurrent neural networks
(RNNs) is discussed. First, we review the present state of
art, featuring their major properties in contrast of those of the
multilayer neural networks. Then, we concisely describe one
of the most practical learning algorithms, i.e. back-
propagation through time.

Revising the basic formulation of the learning
algorithms, we derive a general formula to solve for the
exact solution(s) of the whole connection weights w of
RNNs. On this basis we introduce a novel interpretation of
the supervised learning. Namely, we define a multi-
dimensional Euclidean space, by assigning the cost function
E(w) and every component of w to each coordinate axis.

Since E=E(w) turns up as a hyper surface in this space,
we refer to the surface as learning surface. We see that
topological features of the learning surface are valleys and
hills. Finally, after explicating that the numerical procedures
of learning are equivalent to descending slopes of the
learning surface along the steepest gradient, we show that a
minimal value of E(w) is the intersection of curved valleys.

1. WHY NOW
RECCURENT NEURAL NETWORKS?

Multilayer neural networks (MNNs)[1] have been
increasingly investigated both in theory and application, and it
is known that they are incompatible with time-variant
transformation from the input to the output signals. The
incompatibility results from the governing equations of MNNs
which do not involve time explicitly as a variable.

In recent years, to overcome such incompatiblity, several
attempts have been reported, in which time-variant outputs
were treated. Doya and Yoshizawa[2] developed a neural
network (NN) and named it Adaptive Neural Oscillator, which
works as the temporal pattern memory in the motor nervous
systems to realize periodic motions such as walking and
swimming. Sato et al.[3] trained an NN, naming it
APOLLON, to generate voice waveforms which include
fluctuations necessary to retain naturalness of speech sound.

In these applications of NNs more elaborate topologies
were used than that of MNNs. They include feedback
connections between neurons as well as a neuron function
allowing for time-variant neuron states. Currently there has
been a growing interest in such NNs, called categorically
recurrent neural networks (RNNs). One of the most noticeable
features of RNNs is their compatibility with spatiotemporal
patterns such as those related to speech synthesis, visual
perception, and motion control of robots.

More generally, RNNs are categorized as an NN model
which is featured by full connections between every neuron
including a feedback loop to itself, as well as a neuron func-
tion governed by a nonlinear regular differential equation with
respect to time. It is for this reason that the majority of NN
models proposed so far can be categorized as more or less

partial variations of RNNs. Due to such complexities,
supervised learning (SL) of RNNs had not been developed
until very recently, when different research groups introduced
several prototypes of learning algorithms independently.

Most of these prototypes of SL algorithms (SLAs) were
described as numerical procedures of solving simultaneous
nonlinear differential equations for the unknown multiple
connection weights. As the number of neurons increases, 1.e.
the number of connections increases, more and more
numerical calculations are required.

It is mainly for this reason that no practical studies have
ever been reported on large-scale numerical simulations for SL
of RNNs. At the present state of art, no one can answer
the fundamental question: "What can and what can not be
realized by RNNs?" The investigations into SL for RNNs
have only just begun in the history of the research on NNs
which is more than a quarter of a century old.

2. HOW TO MAKE THEM LEARN?
2.1. How Neurons Behave?

Let us consider an RNN which consists of N neurons in
total. At time ¢, an arbitrary neuron (number i) receives the
external input signal X(¢). It is connected with the output y{?)
of every neuron (j) including itself through a weighted
connection in terms of wi[.y{(t). Then it transmits the output

signal y,(f) defined by the following equations:
dx;(1 ud
’}’i—-——é—f——l=—xi(t)+2w,-jyj(t)+X,-(t), ey
J
Yi(t)zf(xi(t))5%+ex,‘(l) ’ (2)

where ¥ denotes the time constant of time-varying state x;(t) of
neuron /. Let every connection weight w;; be denoted by
vector w of N2-dimensions.

In principle, any one of the neurons can be either an in-
put or an output neuron, or both. We consider the case where
nin(SN) neurons are given the external input signals, and the
output signals of n,,(SN) neurons are externally extracted.
We use vector representations to designate categorically the
whole input and output signals as x(¢) and y(¢) of
N-dimensions, as well as the external input and the desired
output as X () and Y(¢) of nj,- and nyy-dimensions, respec-
tively.

2.2. What Is Supervised Learning?

Given a definite combination of the external input X(¢)
and the desired output Y (), it is referred to hereafter as a
"learning pattern" (LP). In principle, SL is a numerical process
to minimize the difference between y(#) and Y(¢) in terms of
the cost function E through adjusting the connection weight w.
There are several variations proposed concerning how to
define E and how to adjust w.

We can classify them into two basic categories, judging
whether w is adjusted off-line or on-line, as follows:

(A) Run an RNN within a certain period of time

—1005—

(generally for the duration of a given LP), regarding w as
time-invariant, then stop it, and ad]ust w off-line. (See fig.1.)

(B) Regarding w as time-variant, adjust it on-line, while
running the RNN.

We can categorize into (A) the SLAs proposed by
Pearlmutter{4] and Sato[5] independently, in which they
employed the steepest descent method (SDM) to search for the
minimum of the cost function. On the other hand, category (B)
can be classified further into two sub-categories: i.e. (I) the
one based on the steepest descent method, and (II) the other on
the variation method. The former was proposed independently
by Williams and Zipser[6], Doya and Yoshizawa[2], and
Gherrity[7], while the latter by Sato[8].

In our previous papers[9,10], we investigated the above
mentioned SLASs in detail, and found that category (A) is more
practical than the other two. It is less intricate in the numerical
procedures, and costs less computational time until
convergence of SL and less memory space for simulations.

It is for this reason that we restrict our arguments to
category (A) of SLAs in this paper. Note that the connection
weight vector w is not a function of time ¢, but of the iteration
number v of the numerical procedures of category (A).

Fig.1 Schematic illustration of how the off-line
SLA is conducted.

2.3. How to Formulate Learning?

For simplicity we treat tentatively the case where a single
LP is given. Later, we will extend our arguments to more
general cases of multiple LPs. Now, consider that the given
LP extends along the time axis over =0 to 7.

As is the case in SDM for MNNs, we are concerned
with the squared error between the actual output vector y(f)
and the desired Y(¢). For the time-variant LP of RNNs we
have to integrate the error over t=0 to T to provide a cost
function E{w(Vv)) such as

T

E(w(v))= J-i%(yk(t) Y, (@) dr. 3)
0 k

In SDM we move the weight vector w(v) along the
gradient by fractional displacement Aw(V) per iteration of SLA
expressed termwise as
OE(w(Vv))

ow;
where 77 is an arbitrary constant of small positive quantity. The

fractional decrement AFE of the cost function E against Aw(V)
becomes

oE oE
AE, —Aw(-n <0. (5)
z owy; %‘[aw JJ

It is not a s1mp1e task to derive a general formula for
every component 0E/dw;;. As was described in [4] and [5],
we introduce a Lagrange muitiplier L; to rewrite eq.3 into

E(w(v))=j[zi(yk(r)-n(t))z
0 k
}dt. (6)

Aw;(v)=-1 (n>0), 4)

N

—ZLI{YI l+x ’) Z jyj(t

Note that the formula in the braces on the right-hand side is
always zero.

As a constraint for the Lagrange multiplier L, let us
presume that L is a function of ¢ and satisfies the foliowmg

equatlon
d
Yi ZL t) Wi ')_ -(y-—Y) f() . (N

where 51;(denotes Kroneckers delta. Fractional adjustmem
6wl results in fractional variation &x; for every x, and
ultimately BE for which using eq.6 we obtain

T

SF = J‘zl‘i(t)Yi(t)Swtjdt - [2 TiLi(t)axi:l . ®
gD J i o
Provided the second term in eq.8 is equated to zero, we
can derive 0E/dwj;. This is the case when any one of the
following four pairs of boundary conditions is satisfied:

dx{(0)=0 and &xy(T)=0, C)

8x(0)=0 and L«(T)=0, (10)

L{0)=0 and &xi(T)=0, (11)

L{0)=0 and L «(T)=0. (12)
Then we can rewrite eq.8 as
IE T

— = [L(eyi(Dar, (13)
owy; 0

The differential equation for L; in eq.7 is solvable when
the neuron state x,{7) is known through =0 to T It is clear that
the differential equations for x, and L; are of the first order. It
is for these two reasons that we can only adopt eq.10 or 11
among the four.

2.4. How to Realize It?

An example of numerical procedures is illustrated in
fig.2, where we selected eq.10 as the boundary conditions.
First we calculate every neuron state x(t), or every output y(f)
in the forward direction of time using eqs.l and 2: i.e.
x(0)=x(T) and y(0)=y(T). Then every Lagrange multiplier
(L1(D), La(2),---, Ly(®))=L(t) in the backward direction of time
using eq.7, i.e. L(T)=>L(0). Finally, fractional displacement
Aw using eq.13. These steps of numerical calculations are
iterated until we find a minimal value of the cost function
E(w(V)), in actuality, the one below the prespecified limit of
error.

e W (V+ 1w (VAW (V)]

Fig.2. Flow diagram to illustrate the numerical
procedures of BPTT under the discrete time regime
when eq.10 is used as the boundary conditions.

The numerical procedures described above are calied
back-propagation through time (BPTT), since the mathematical
formulation is similar to that of BP for MNNs. As we have
seen, they are much more intricate than those of BP for MNNs
so that we must face more seriously the same complications in
application as we do in the case of MNNs. They are typically
called local minima, slow learning, over-learning, etc.

Emphasis should be placed on the knowledge in
functional analysis that the cost function £ in eq.3 is the
Lyapnov function of variable v to treat a nonlinear system
under the discrete time regime. It implies that, if and only if N
is unlimited, RNNs can approximate any dynamical systems to
an arbitrarily high precision, and also that there exists an

~1006—

optimum selection wq,, which realizes this approximation[11].

It is obvious that the above complications result from
nonlinearity which exists between w and E(w). For further
arguments we introduce Euclidean space of (N2+1)-
dimensions where E(w) and every component of w are
assigned to each coordinate axis.

Imagine that we plot the cost function E(w), and it turns
up as a hyper surface in this space. So we can state that SL
based on BPTT is equivalent to descending the slope of this
hyper surface by a step of fractional displacement 3w toward a
minimal value (8E=0).

As was proposed in our previous papers as to
MNNs[12,13], let us refer to Euclidean space E-w as
learning space and hyper surface E=E(w) as learning
surface, respectively. To avoid misleading arguments
through analogy, we must keep in mind that solid geometry in
3-D is not always valid in the multi-dimensional space.

3. INNER WORLD OF RNN
3.1. Another Way to Formulate Learning
We discuss BPTT a little more precisely. To solve
numerically the differential equation in eq.l, we must
discretize the time interval =0 to T into minute subintervals of
my in total. Without impairing generality we can assume that
the subinterval At is taken to be unit time length. Thus, we
can rewrite eqs.1 and 2 into

e = (w, 7%,), (14)

1+1yi = f(t+1xi)’ (15)
where prior superscript T denotes the discrete time from 0 to

mp—1, and h; the first order difference equation derived from
eq.1, such as

b 2(1‘%.-)1"«'*2% [+ X7 (16)
i

When we substitute eq.14 repeatedly into “x decreasing
Tone by one down to 0, we can derive

r+1y‘_= f(h,-(w, 2 ’X))
- f(h,.(w,h(w, iy, i), ’x))

'=f(h,- (w,h(w,~ . -,h(w, h(w, 0y OX), ‘X),- . r-lx), ’Xj)

= f(“Hi(w, %, K)) = @y (w.%x,), a7
where we used vector representations such as:

h=(h,hy, - hy), (18)

=%, X, X). 19)

Equation 17, derived first by the authors [12,13], is very
significant, since it implies that the output of neuron i is a
function of initial neuron state Ox, weight w and extended
sequence of the discretized external input X from =0 to .

OX 4 "‘0"
m °“°oo,,o4°°°°°'°o g
N e ‘=%, %,.-,'x)
Fig.3. Topological illustration of numerical
procedures of BPTT.

Thus, no matter how complex I may appear, eq.17
represents a nonlinear mapping from the extended external
input TN to the output fy. The numerical algorithms are
schematically illustrated in fig.3, in which the time-variant
output y;(t) of neuron i is traced as a curved trajectory as a
function of the extended external input *X.

More generally, we can state that SL for RNNs is to

trace trajectory y(¢) of every external output, and to shape it
into the desired ¥Y(f) by adjusting weight w.

3.2 Memory Surface

Let us consider the ideal case of perfect SL, i.e.
yi()=Y () for every k. To remove the dependence on the
initial states of neurons, we maintain them identical, say Ox=0
(zero vector). Then w must satisfy the nonlinear equation:

Y, = By (w, Ox, TK). 20)

We can admit that there exists at least a solution of
€q.20, which is denoted by *w,. Noticing that eq.20 repre-
sents a constraint to decrease degrees of freedom by one in the
N2-dimensional topological space of w, we can see that a set
which contains every solution of eq.20, {"w,}, constitutes a
manifold of (N?-1)-dimensions, i.e. a hyper surface* in the
N2-dimensional Euclidean space. Every point on the hyper
surface enables the transformation from T8 to #1Y;, both of
which are given to RNNs as the external signals.

In other words, when we consider the topological space
Y-TX, it constitutes the external world of networks, while the
topological space w constitutes the inner world. A single
hyper surface in the inner world corresponds to one point in
the external world. Thus we may state that RNNs memorize an
external input-output pair (*X,®1Y,) as a hyper surface {™w;}
in the inner world. Therefore, we refer to this hyper surface in
space w as memory surface {12,13].

For the LP from t=0 to T, BPTT is equivalent to tracing
a trajectory of (*N,#1Y}) in the external world from 7=0 to
mp—1. This results in simultaneous nonlinear equations of
class mr, and it follows that multiple memory surfaces in total
number mr exist in space w.

The above statement applies to each external output of
neuron k=0 to nyy, so that we have mrxng, memory sur-
faces. Moreover, when we extend our arguments to multiple
LPs of / in total, the number of memory surfaces amounts to
mrXnaX!. In the ideal case where every memory surface
intersects a common domain® (or domains), every point within
the domain(s) provides a set of exact solutions {Wexact} of
simultaneous nonlinear equations of class mpxng X!,

¥ We are investigating whether or not a single set of solutions [%w;} of
eq.19 represents separate multiple hyper surfaces just like double leaves of
hyperboloids in three dimensions (3-D). Nevertheless, let us regard { *w;}
tentatively, as if it is a single hyper surface.

1 An intersection of multiple hyper surfaces is not necessarily a point but

more generally a domain which is also a hyper surface of lower
dimensions.

4. WHAT ABOUT LEARNING SPACE?
4.1. Learning Surface Looks Like What?

We have pointed out that existence of {wop} is admitted
when an unlimited number of neurons are available. It is
hardly possible to solve analytically a large class of
simultaneous nonlinear equations as complex as shown in
eq.17. It is for this reason that we employ SDM to search for a
minimal value of the cost function E(Wpp).

Moreover, in practical applications where the total
number of neurons is limited, it is quite uncertain whether or
not there exists an exact solution. To clear this question, the
notion of memeory surface plays an essential role.

As we have demonstrated for SL. of MNNs[12,13], let
us decompose the cost function E(w) in terms of LP A4,
discrete time 7 and output neuron &, to acquire a clear-cut
overview of the learning space:

L omony,
E(w)= 3, 3, 3, iE(w), @1
A=11=1 k=]
T liz v \?
1E(w) ='2_(AYI¢(W)"AYI¢) : 22)

Note that a set of solutions { “Jw,} for [E,(w)=0, i.e.
o fwk)=}Yk, is equivalent to the memory surface. If
w= "llwk , gradient V 7E,(w) of the learning surface is always
equal to 0. Thus, the first two terms in the series expansion of
XE,(w) with respect to (w— T"Alwk) are equated to 0, and we

--1007 —

obtain an approximation for [E,(w) around w= 1",fwkz
1 — - _ T
fEk(W)E"i(W—Tllwk)vszk(fllwk)(w—r}_lwk) s (23)

where V2 and superscript T denote Hessian and transposition
operator, respectively.

Equation 23 implies that, if we plot the termwise cost
function in the learning space, it becomes a hyper surface of
the second-order in the vicinity of the memory surface

{ T_;}wk }. In addition, when we plot the locus of w which

satisfies eq.23 for a positive definite value of [E;(w), or an

equi-contour, it turns up as a hyper ellipse with each principal
axis lying in the same direction as one of the eigenvectors of

the Hessian matrix V2 fE,. Thereby the length of each
principal axis is inverse-proportional to the square root of the
corresponding eigenvalue of the matrix.

It is fairly simple to show that every diagonal element of
the Hessian matrix 1s positive, and also that its determinant is
always 0. It follows immediately that one of the eigenvalues
must be equal to 0. In other words, the corresponding
principal axis of the hyper ellipse becomes infinite in length.
This is a conspicuous feature of the termwise learning surface
E= JE,(w) in the vicinity of the memory surface { “}'w,] .

In fact, we can visualize the termwise cost function in
3-D cross sections. When any two of the coordinate axes of 3-
D coincide with the longest ellipse-axis and the E axis, it turns
up as a very long valley along the longest axis of the hyper
ellipse. In short, the bottom of the valley is another expression
to paraphrase the memory surface. Due to limited space of the
paper we only mention our observations that in most parts the
valley is curved gently, and its bottom is barely inclined.

On the other hand, we can prove easily that every partial

derivative afEk(w)/aw,-j becomes zero in infinite regions of

space w. Considering this together with fairly rapid saturation
of the sigmoid function, we can understand that the termwise
learning surface becomes flat in remote regions from the mem-
ory surface. This is the second feature of the learning surface
which we may describe it as a hill by the analogy of geology.

4.2. Valleys and Hills Feature Learning Surface?

Having conducted various kinds of simulations, we
discovered that the above two topological features are clearly
observable, even when the termwise cost functions are
multiply superposed.

1.5
1.0
05
0.0

~100
L3

100 -100

Fig.4. A typical example of simulation results
showing valleys and hills of the learning
surface with 2-D cross sections of all the 10
memory surfaces shown on the base plane. The
open circle denotes wy,;,, while the shaded weyxac:.

Figure 4 illustrates a typical example of simple simula-
tions for N=2, njx=ny,=1, and mr=5 of SL. All the memory
surfaces of 10 in total are shown on the base plane as 2-D
cross sections. As is clearly seen in this figure, the valleys of
the learning surface are gently curved in most parts. This is a
distinctive feature of the learning surface which we can utilize
to accelerate SL. For details readers should refer to our
previous papers{12,13].

The minimal value of E(wp;,) reached at v=60000 is

very close to zero so that the vector wpi, is a good
approximation of the intersection of all the memory surfaces
Wexact indicated by a shaded circle. In this case we may
conclude that SL has been completed almost perfectly.

5. HOW TO CLEAR LOCAL MINIMA?

In more complicated simulations of SL conducted using
larger scale RNNs, the number of the termwise cost functions
is fairly large. Obviously their superposition in the learning
space complicates the overall structure of the resultant learning
surface. Nevertheless, attempting to view the learning space
perspectively through memory surfaces, we can acquire clear-
cut insights into the complications commonly related to SL.

In some cases there exists apparently no common inter-
section of all the memory surfaces, but they come very close to
each other in a certain region. The resultant learning surface
may turn up there as a deep valley with a broad bottom like a
geological basin, as is shown schematically in fig.5.

In case (a) each memory surface intersects every other
and comes much closer to each other than in cases (b) and (c).
It seems very reasonable to expect that the minimal in case (a)
provides a good approximation of the minimum. As shown by
(c), it happens very often that a particular memory surface
never intersects the others and lies almost in parallel to one of
them. The memory surfaces of this pair approach each other
very gradually toward infinity. Once we are trapped in this
valley, the bottom of which is usually inclined only barely, it
is hardly possible to converge SLA. As is usually the case in
applications where N is fixed, it depends mainly on initial
selections of w(0) whether we reach ultimately (a), (b) or (¢).

To solve this, we can reconstruct topological configura-
tion of memory surfaces by attaching extra degrees of freedom
to the learning space w. In other words, introducing an
additional number of neurons, we can increase the dimensions
of space w. We are now continuing our investigations into this
possibility.

3 / E\(ty\(cy

3 .
4 0
Zs e 7/— .
memory surfaces .
S

L/ SPACE W e s

£ ¢ Ew): learning surface

Fig.5. Schematic illustration of local minima.

REFERENCES
{1] Rumelhart DE, McClelland JL and the PDP Research Group: Parallel
Distributed Processing. 1, The MIT Press (1987)
[2] Doya K and Yoshizawa S: Adaptive neural oscillator using continu-
ous-time back-propagation. Neural Networks 2 pp.375-385 (1989)
[3] Sato M, M Joe and Hirahara T: APOLONN brings us to the real
world-learning nonlinear dynamics and fluctuations in nature. Proc.
IICNN'90-San Diego 1 pp.581-587 (1990)
{4] Pearimutter BA: Learning state space trajectories in recurrent neural
networks. Neural Computation 1 pp.263-269 (1989)
{51 Sato M: A learning algorithm to teach spatio-temporal patterns to re-
current neural networks. Biol. Cybern. 62 pp.259-263 (1990)
[6] Williams RJ and Zipser D: A learning algorithm for continually run-
ning fully recurrent neural networks. Neural Computation 1 pp.270-280
(1989)
{7} Gherrity M: A learning algorithm for analog, fully recurrent neural
networks. Proc. IJCNN'89-Washington D.C. 1 pp.643-644 (1989)
[8] Sato M: A real time learning algorithm for recurrent analog neural
networks. Biol.. Cybem. 62 pp.2229-2232 (1990)
[9] Watanabe T, Gouhara K and Uchikawa Y: Study of learning algo-
rithms and shape of the learning surface for recurrent neural networks.
Systems and Computers in Japan (1993) (in print)
{10] Gouhara K, Watanabe T and Uchikawa Y: Learning process of recur-
rent neural networks. Proc. IJCNN'91-Singapore 1 pp.746-751 (1991)
[11] Seidl D R and Lorentz R D: A structure by which a recurrent neural
network can approximate a nonlinear dynamic system. Proc. IICNN'91-
Seattle 2 pp.709-714 (1991)
[12] Gouhara K, Uchikawa Y: Analysis for learning surface of hierarchical
neural networks. IEICE Techn. Rep. NC90-43 (1990) (in Japanese)
[13] Gouhara K, Kanai N, Uchikawa Y: Valley shape of learning surface
and learning rule. /EICE Techn. Rep. NC90-44 (1990) (in Japanese)

—1008 -

