• Title/Summary/Keyword: power prediction

Search Result 2,166, Processing Time 0.036 seconds

Study on the Elemental Diffusion Distance of a Pure Nickel Layer Additively Manufactured on 316H Stainless Steel (316H 스테인리스 강 위에 적층 제조된 순수 니켈층의 원소 확산거리 연구)

  • UiJun Ko;Won Chan Lee;Gi Seung Shin;Ji-Hyun Yoon;Jeoung Han Kim
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.220-225
    • /
    • 2024
  • Molten salt reactors represent a promising advancement in nuclear technology due to their potential for enhanced safety, higher efficiency, and reduced nuclear waste. However, the development of structural materials that can survive under severe corrosion environments is crucial. In the present work, pure Ni was deposited on the surface of 316H stainless steel using a directed energy deposition (DED) process. This study aimed to fabricate pure Ni alloy layers on an STS316H alloy substrate. It was observed that low laser power during the deposition of pure Ni on the STS316H substrate could induce stacking defects such as surface irregularities and internal voids, which were confirmed through photographic and SEM analyses. Additionally, the diffusion of Fe and Cr elements from the STS316H substrate into the Ni layers was observed to decrease with increasing Ni deposition height. Analysis of the composition of Cr and Fe components within the Ni deposition structures allows for the prediction of properties such as the corrosion resistance of Ni.

Dose Assessment for Workers in Accidents (사고 대응 작업자 피폭선량 평가)

  • Jun Hyeok Kim;Sun Hong Yoon;Gil Yong Cha;Jin Hyoung Bai
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.265-273
    • /
    • 2023
  • To effectively and safely manage the radiation exposure to nuclear power plant (NPP) workers in accidents, major overseas NPP operators such as the United States, Germany, and France have developed and applied realistic 3D model radiation dose assessment software for workers. Continuous research and development have recently been conducted, such as performing NPP accident management using 3D-VR based on As Low As Reasonably Achievable (ALARA) planning tool. In line with this global trend, it is also required to secure technology to manage radiation exposure of workers in Korea efficiently. Therefore, in this paper, it is described the application method and assessment results of radiation exposure scenarios for workers in response to accidents assessment technology, which is one of the fundamental technologies for constructing a realistic platform to be utilized for radiation exposure prediction, diagnosis, management, and training simulations following accidents. First, the post-accident sampling after the Loss of Coolant Accident(LOCA) was selected as the accident and response scenario, and the assessment area related to this work was established. Subsequently, the structures within the assessment area were modeled using MCNP, and the radiation source of the equipment was inputted. Based on this, the radiation dose distribution in the assessment area was assessed. Afterward, considering the three principles of external radiation protection (time, distance, and shielding) detailed work scenarios were developed by varying the number of workers, the presence or absence of a shield, and the location of the shield. The radiation exposure doses received by workers were compared and analyzed for each scenario, and based on the results, the optimal accident response scenario was derived. The results of this study plan to be utilized as a fundamental technology to ensure the safety of workers through simulations targeting various reactor types and accident response scenarios in the future. Furthermore, it is expected to secure the possibility of developing a data-based ALARA decision support system for predicting radiation exposure dose at NPP sites.

PHYSICAL PROPERTIES OF VAR10US BRANDS OF ELASTOMERIC CHAINS (수종의 합성 고무탄성재의 성질에 관한 연구)

  • Kim, Kyung-Ho;Hwang, Chung-Ju;Sung, Sang-Jin
    • The korean journal of orthodontics
    • /
    • v.27 no.6 s.65
    • /
    • pp.943-954
    • /
    • 1997
  • Forces needed for orthodontic tooth movement are obtained from various appliances such as orthodontic wires or elastic rubber. Orthodontic elastic rubber is widely used clinically, but permanent deformation and force decay may occur from the environmental changes, time of clinical use and the extent of the stretch, making the Prediction of force being applied difficult. The Present study examined and compared the changes in residual force between three brands of elastomeric chains (Ormco Generation II Power Chains ; brand A, RMO : Energy-Chain ; brand B, Unitek : AlastiK ; brand C) under various environmental conditions, amount of initial force, types of elastomer and the rate of extension. The characteristic physical properies of the elastomeric chains were as follows. 1. In all three brands, the residual force ratio was largest when the chains were stored in air, with no difference between water and saliva. 2. In all three brands, after 24 hours, there was no statistical difference in residual force ratio according to the initial force level. 3. In Brand A and B, the presence of filament had no correlation with the residual force ratio. In Brand C force decay was more severe when the chain contained filament. 4. In each brand, rate of extension had no effect on residual force ratio. 5. Brand B showed relatively higher residual force ratio compared to other brands.

  • PDF

Prediction of Impedance Characteristics of Multi-Layer Ceramic Capacitor Based on Coupled Transmission Line Theory (결합 전송선로 이론을 이용한 적층 세라믹 커패시터의 임피던스 특성 예측)

  • Jeon, Jiwoon;Kim, Jonghyeon;Pu, Bo;Zhang, Nan;Song, Seungjae;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.135-147
    • /
    • 2015
  • With the miniaturization and digitalization of electronics industry, demand for Multi-Layer Ceramic Capacitor(MLCC) has increased steadily because of its various applications such as DC Blocking, Decoupling and Filtering etc. The modeling techniques of MLCC has been studied for a long time but most of these modeling method can only be applied after measurement and this has some losses of material, time in both production stage and measurement stage. This paper proposes the modeling method which can predict the frequency characteristics of MLCC from structure data and material data in design stage. The impedance of N-Layer Capacitor can be expressed in differential mathematical form based on coupled transmission line equations. By using this formula, we can predict the impedance of MLCC. As a result, proposed modeling is correspond with simulation, and it takes much less time to obtain the result than the simulation.

The Design of Single Phase PFC using a DSP (DSP를 이용한 단상 PFC의 설계)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.57-65
    • /
    • 2007
  • This paper presents the design of single phase PFC(Power Factor Correction) using a DSP(TMS320F2812). In order to realize the proposed boost PFC converter in average current mode control, the DSP requires the A/D sampling values for a line input voltage, a inductor current, and the output voltage of the converter. Because of a FET switching noise, these sampling values contain a high frequency noise and switching ripple. The solution of A/D sampling keeps away from the switching point. Because the PWM duty is changed from 5% to 95%, we can#t decide a fixed sampling time. In this paper, the three A/D converters of the DSP are started using the prediction algorithm for the FET ON/OFF time at every sampling cycle(40 KHz). Implemented A/D sampling algorithm with only one timer of the DSP is very simple and gives the autostart of these A/D converters. From the experimental result, it was shown that the power factor was about 0.99 at wide input voltage, and the output ripple voltage was smaller than 5 Vpp at 80 Vdc output. Finally the parameters and gains of PI controllers are controlled by serial communication with Windows Xp based PC. Also it was shown that the implemented PFC converter can achieve the feasibility and the usefulness.

Assessing a Body Shape Index and Waist to Height Ratio as a Risk Predictor for Insulin Resistance and Metabolic Syndrome among Korean Adults (한국 성인의 인슐린저항성 및 대사증후군 위험 예측인자로서 체형지수와 허리둘레/신장 비율의 효용성)

  • Shin, Kyung-A
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.1
    • /
    • pp.44-53
    • /
    • 2018
  • The WHtR (waist to height ratio) and ABSI (a body shape index) are indicators that reflect abdominal obesity. This study examined the insulin resistance and metabolic syndrome prediction ability of ABSI and WHtR. In this study, 4,395 people aged 20 years or older, who underwent physical examinations at a General Hospital in Gyeonggi-do from January 2017 to September 2017 were assessed on a cross section survey. Metabolic syndrome was defined according to the criteria of the AHA/NHLBI. Insulin resistance was judged to be insulin resistance when the HOMA-IR value was 3.0 or more. Both men and women showed a stronger correlation between WHtR and the metabolic risk factors than ABSI. The AUC value of WHtR and ABSI was 0.849 and 0.676, respectively (p<0.001). The AUC value of WHtR and ABSI for predicting insulin resistance was 0.818 and 0.641, respectively (p<0.001). In conclusion, the ABSI has low predictive power of insulin resistance and metabolic syndrome whereas the WHtR has good predictive power for metabolic syndrome and insulin resistance.

Temporal Change in Radiological Environments on Land after the Fukushima Daiichi Nuclear Power Plant Accident

  • Saito, Kimiaki;Mikami, Satoshi;Andoh, Masaki;Matsuda, Norihiro;Kinase, Sakae;Tsuda, Shuichi;Sato, Tetsuro;Seki, Akiyuki;Sanada, Yukihisa;Wainwright-Murakami, Haruko;Yoshimura, Kazuya;Takemiya, Hiroshi;Takahashi, Junko;Kato, Hiroaki;Onda, Yuichi
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.128-148
    • /
    • 2019
  • Massive environmental monitoring has been conducted continuously since the Fukushima Daiichi Nuclear Power accident in March of 2011 by different monitoring methods that have different features together with migration studies of radiocesium in diverse environments. These results have clarified the characteristics of radiological environments and their temporal change around the Fukushima site. At three months after the accident, multiple radionuclides including radiostrontium and plutonium were detected in many locations; and it was confirmed that radiocesium was most important from the viewpoint of long-term exposure. Radiation levels around the Fukushima site have decreased greatly over time. The decreasing trend was found to change variously according to local conditions. The air dose rates in environments related to human living have decreased faster than expected from radioactive decay by a factor of 2-3 on average; those in pure forest have decreased more closely to physical decay. The main causes of air dose rate reduction were judged to be radioactive decay, movement of radiocesium in vertical and horizontal directions, and decontamination. Land-use categories and human activities have significantly affected the reduction tendency. Difference in the air dose rate reduction trends can be explained qualitatively according to the knowledge obtained in radiocesium migration studies; whereas, the quantitative explanation for individual sites is an important future challenge. The ecological half-lives of air dose rates have been evaluated by several researchers, and a short-term half-life within 1 year was commonly observed in the studies. An empirical model for predicting air dose rate distribution was developed based on statistical analysis of an extensive car-borne survey dataset, which enabled the prediction with confidence intervals. Different types of contamination maps were integrated to better quantify the spatial data. The obtained data were used for extended studies such as for identifying the main reactor that caused the contamination of arbitrary regions and developing standard procedures for environmental measurement and sampling. Annual external exposure doses for residents who intended to return to their homes were estimated as within a few millisieverts. Different forms of environmental data and knowledge have been provided for wide spectrum of people. Diverse aspects of lessons learned from the Fukushima accident, including practical ones, must be passed on to future generations.

The Software Complexity Estimation Method in Algorithm Level by Analysis of Source code (소스코드의 분석을 통한 알고리즘 레벨에서의 소프트웨어 복잡도 측정 방법)

  • Lim, Woong;Nam, Jung-Hak;Sim, Dong-Gyu;Cho, Dae-Sung;Choi, Woong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.153-164
    • /
    • 2010
  • A program consumes energy by executing its instructions. The amount of cosumed power is mainly proportional to algorithm complexity and it can be calculated by using complexity information. Generally, the complexity of a S/W is estimated by the microprocessor simulator. But, the simulation takes long time why the simulator is a software modeled the hardware and it only provides the information about computational complexity quantitatively. In this paper, we propose a complexity estimation method of analysis of S/W on source code level and produce the complexity metric mathematically. The function-wise complexity metrics give the detailed information about the calculation-concentrated location in function. The performance of the proposed method is compared with the result of the gate-level microprocessor simulator 'SimpleScalar'. The used softwares for performance test are $4{\times}4$ integer transform, intra-prediction and motion estimation in the latest video codec, H.264/AVC. The number of executed instructions are used to estimate quantitatively and it appears about 11.6%, 9.6% and 3.5% of error respectively in contradistinction to the result of SimpleScalar.

Lifetime test of batteries for BLE modules for site identification of vessel's crews and passengers (SIVCP) (SIVCP용 BLE 모듈의 배터리 수명시험)

  • Kwon, Hyuk-joo;Kim, Min-Gwon;Kim, Yoon-Sik;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.754-759
    • /
    • 2015
  • Nowadays, short distance communication systems with low power energy (LPE) are developed for identification and monitoring of site identification of vessel crews and passengers (SIVCP). LPE communication modules, such as Bluetooth low energy (BLE) and Zigbee, are used for short distance communications with LPE. These modules enable 1:N communications and their popularity is growing since the modules can be mounted on movable objects, such as mobile devices and human body. When these modules are used, the important factor that affects their operation time and design are the capacity and size of battery. Therefore, they must be made as small as possible, and the battery should be selected to be slightly smaller than the module. In this study, we calculate the theoretical life of batteries used in SIVCP BLE modules using data sheet and discharge characteristic graph under the condition of a 1/250 transmission-ratio (TR). We thus calculate experimental life by measuring transmission current for the same TR, and low speed mode current for a 1/5000 TR and measure long-term experimental life using 1/25 TR for days. Through these experiments, we verify experimental methods for the prediction and extension of battery life that would enable us to select appropriate sizes of batteries based on vessel usage and passenger types. The selections of the module TR and battery size are important factors affecting the cost reduction of module design, the battery maintenance, and passenger convenience.

Evaluation of various nutrients removal models by using the data collected from stormwater wetlands and considerations for improving the nitrogen removal (인공습지에서 영양소 제거 설계모델 검토 및 질소제거 개선방안에 대한 고찰)

  • Park, Kisoo;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.90-102
    • /
    • 2017
  • In this study, various types of nutrient models were tested by using two tears's water quality data collected from the stormwater wetland in Korea. Based on results, most important factor influencing nitrogen removal was hydraulic loading rate, which indicates that surface area of wetland is more important than its volumetric capacity, and model proposed by WEF was found to give a least error between measured and calculated values. For the phosphorus, in case assuming a power relationship between rate constant and temperature, the best prediction result were obtained, but temperature was most sensitive parameter affecting phosphorus removal. In addition, denitrification was always a limiting step for the nitrogen removal in this particular wetland mostly due to the lack of carbon source and high dissolved oxygen concentration. In this paper, several alternatives to improve nitrogen removal, including proper arrangement and designation of wetland elements and use of floating plants or synthetic fiber mat to control oxygen level and to capture the algal particles were proposed and discussed.