DOI QR코드

DOI QR Code

Temporal Change in Radiological Environments on Land after the Fukushima Daiichi Nuclear Power Plant Accident

  • Received : 2019.10.10
  • Accepted : 2019.10.28
  • Published : 2019.12.31

Abstract

Massive environmental monitoring has been conducted continuously since the Fukushima Daiichi Nuclear Power accident in March of 2011 by different monitoring methods that have different features together with migration studies of radiocesium in diverse environments. These results have clarified the characteristics of radiological environments and their temporal change around the Fukushima site. At three months after the accident, multiple radionuclides including radiostrontium and plutonium were detected in many locations; and it was confirmed that radiocesium was most important from the viewpoint of long-term exposure. Radiation levels around the Fukushima site have decreased greatly over time. The decreasing trend was found to change variously according to local conditions. The air dose rates in environments related to human living have decreased faster than expected from radioactive decay by a factor of 2-3 on average; those in pure forest have decreased more closely to physical decay. The main causes of air dose rate reduction were judged to be radioactive decay, movement of radiocesium in vertical and horizontal directions, and decontamination. Land-use categories and human activities have significantly affected the reduction tendency. Difference in the air dose rate reduction trends can be explained qualitatively according to the knowledge obtained in radiocesium migration studies; whereas, the quantitative explanation for individual sites is an important future challenge. The ecological half-lives of air dose rates have been evaluated by several researchers, and a short-term half-life within 1 year was commonly observed in the studies. An empirical model for predicting air dose rate distribution was developed based on statistical analysis of an extensive car-borne survey dataset, which enabled the prediction with confidence intervals. Different types of contamination maps were integrated to better quantify the spatial data. The obtained data were used for extended studies such as for identifying the main reactor that caused the contamination of arbitrary regions and developing standard procedures for environmental measurement and sampling. Annual external exposure doses for residents who intended to return to their homes were estimated as within a few millisieverts. Different forms of environmental data and knowledge have been provided for wide spectrum of people. Diverse aspects of lessons learned from the Fukushima accident, including practical ones, must be passed on to future generations.

Keywords

References

  1. International Atomic Energy Agency. The Fukushima Daiichi Accident. ISBN:978-92-0-107015-9. 2015.
  2. Saito K, Onda Y. Outline of the national mapping projects implemented after the Fukushima accident. J. Environ. Radioact. 2015;139:240-249. https://doi.org/10.1016/j.jenvrad.2014.10.009
  3. Sanada Y, Sugira T, Nishizawa Y, Kondo A, Torii T. The aerial radiation monitoring in Japan after the Fukushima Daiichi nuclear power plant accident. J. Prog. Nucl. Sci. Technol. 2014;4:76-80. https://doi.org/10.15669/pnst.4.76
  4. Saito K, Onda Y, Hisamatsu S. (Edt.), SPECIAL ISSUE: Japanese national projects on large-scale environmental monitoring and mapping in Fukushima Volume 1. J. Environ. Radioact. 2015;139:240-434. https://doi.org/10.1016/j.jenvrad.2014.10.009
  5. Saito K, Onda Y, Hisamatsu S. (Edt.), SPECIAL ISSUE: Japanese national projects on large-scale environmental monitoring and mapping in Fukushima Volume 2. J. Environ. Radioact. 2017;166(3):417-474. https://doi.org/10.1016/j.jenvrad.2016.10.017
  6. Saito K, Onda Y, Hisamatsu S. (Edt.), SPECIAL ISSUE: Five years of Fukushima. J. Environ. Radioact. 2019; 210 (to be published in Dec. 2019).
  7. Onda Y. Interdisciplinary Study on Environmental Transfer of Radionuclides from the Fukushima Daiichi NPP Accident. 2019. http://www.ied.tsukuba.ac.jp/hydrogeo/isetr/ISETRen/index-EN.html
  8. Kitamura A, et al. Mathematical modelling of radioactive contaminants in the Fukushima environment. Nucl. Sci. Eng. 2015;179(1):104-118. https://doi.org/10.13182/NSE13-89
  9. Malins A, Okumura M, Machida M, Takemiya H, Saito K. Field of view for environmental radioactivity. Proceedings of the 2015 International Symposium on Radiological Issues for Fukushima's Revitalized Future. Japan. May 30-31, 2015.
  10. Mikami S, Maeyama T, Hoshide Y, Sakamoto R, Sato S, Okuda N, Sato T, Takemiya H, Saito K. The air dose rate around the Fukushima Dai-ichi Nuclear Power Plant: its spatial characteristics and temporal changes until December 2012. J. Environ. Radioact. 2015;139:250-259. https://doi.org/10.1016/j.jenvrad.2014.08.020
  11. Andoh M, Yamamoto H, Kanno T, Saito K. Measurement of ambient dose equivalent rates by walk survey around Fukushima Dai-ichi Nuclear Power Plant using KURAMA-II until 2016. J. Environ. Radioact. 2018;190-191:111-121. https://doi.org/10.1016/j.jenvrad.2018.04.025
  12. Andoh M, et al. Measurement of air dose rates in wide area around the Fukushima Daiichi nuclear power plant through a series of car-borne surveys. J. Environ. Radioact. 2015;139:266-280. https://doi.org/10.1016/j.jenvrad.2014.05.014
  13. Tanigaki M, Okumura R, Takamiya K, Sato N, Yoshino H, Yoshinaga H, Kobayashi Y, Uehara A, Yamana H. Development of KURAMA-II and its operation in Fukushima. Nucl. Instrum. Methods Phys. Res., Sect. A. 2015;781:57-64. https://doi.org/10.1016/j.nima.2015.01.086
  14. Tsuda S, Saito K. Spectrum-dose conversion operator of NaI(Tl) and CsI(Tl) scintillation detectors for air dose rate measurement in contaminated environments. J. Environ. Radioact. 2017;166(3):419-426. https://doi.org/10.1016/j.jenvrad.2016.02.008
  15. Tsuda S, Yoshida T, Tsutsumi M, Saito K. Characteristics and verification of a car-borne survey system for dose rates in air: KURAMA-II. J. Environ. Radioact. 2015;139:260-265. https://doi.org/10.1016/j.jenvrad.2014.02.028
  16. Kinase S, Sato S, Sakamoto R, Yamamoto H, Saito K. Changes in ambient dose equivalent rates around roads at Kawamata after the Fukushima accident. Radiat. Prot. Dosim. 2015;167(1-3):340-343. https://doi.org/10.1093/rpd/ncv275
  17. Kinase S, Takahashi T, Sato S, Sakamoto R, Kimiaki S. Development of prediction models for radioactive caesium distribution within the 80 km-radius of the Fukushima Daiichi nuclear power plant. Radiat. Prot. Dosimetry. 2014;160(4):318-321. https://doi.org/10.1093/rpd/ncu014
  18. Murakami-Wainwright H, Seki A, Chen J, Saito K. A multiscale Bayesian data integration approach for mapping air dose rates around the Fukushima Daiichi Nuclear Power Plant. J. Environ. Radioact. 2017;167:62-69. https://doi.org/10.1016/j.jenvrad.2016.11.033
  19. Sasaki M, Sanada Y, Yamamoto A. Application of the forest shielding factor to the maximum-likelihood expectation maximization method for airborne radiation monitoring. Radiat. Prot. Dosim. 2019;184(3-4):400-404. https://doi.org/10.1093/rpd/ncz095
  20. Sanada Y, Torii T. Aerial monitoring around the Fukushima Daiichi nuclear power plant using an unmanned helicopter. J. Environ. Radioact. 2015;139:294-299. https://doi.org/10.1016/j.jenvrad.2014.06.027
  21. International Commission on Radiation Units and Measurements. Gamma-ray spectrometry in the environment. ICRU Report 53, 1993.
  22. Saito K, et al. Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Daiichi Nuclear Power Plant accident. J. Environ. Radioact. 2015;139:308-319. https://doi.org/10.1016/j.jenvrad.2014.02.014
  23. Mikami S, et al. Spatial distributions of radionuclides deposited onto ground soil around the Fukushima Dai-ichi Nuclear Power Plant and their temporal change until December 2012. J. Environ. Radioact. 2015;139: 320-343. https://doi.org/10.1016/j.jenvrad.2014.09.010
  24. Mikami S, et al. The deposition densities of radiocesium and the air dose rates in undisturbed fields around the Fukushima Daiichi nuclear power plant; their temporal changes for five years after the accident. J. Environ. Radioact. 2019;139:320-343. https://doi.org/10.1016/j.jenvrad.2014.09.010
  25. Matsuda N, Mikami S, Shimoura S, Takahashi J, Nakano M, Shimada K, Uno K, Hagiwara S, Saito K. Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi Nuclear Power Plant, Japan. J. Environ. Radioact. 2015;139:427-434. https://doi.org/10.1016/j.jenvrad.2014.10.001
  26. Loughran RJ, Wallbrink PJ, Walling DE, Appleby PG. Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides. First Ed. New York. Kluwer Academic Publishers. 2002;pp. 41-57 (Chapter 3).
  27. Saito K, et al. Radiological conditions in the environment around the Fukushima Daiichi nuclear power plant site. Global Environ. Res. 2016;20:15-22.
  28. Kato H, Onda Y, Gao X, Sanada Y, Saito K. Reconstruction of a Fukushima accident-derived radiocesium fallout map for environmental transfer studies. J. Environ. Radioact. 2019;210:105996 https://doi.org/10.1016/j.jenvrad.2019.105996
  29. Katata G, et al. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulation of an atmospheric dispersion model with an improved de- position scheme and oceanic dispersion model. Atmos. Chem. Phys. 2015;15(2):1029-1070. https://doi.org/10.5194/acp-15-1029-2015
  30. Ministry of Education, Culture, Sports, Science and Technology. Report on Construction of Maps Indicating Air Dose Rate. 2012. (in Japanese) DistributionEtc.http://radioactivity.nsr.go.jp/ja/contents/6000/5235/view.html(accessed)
  31. International Atomic Energy Agency. Generic Procedures for Assessment and Response during a Radiological Emergency. IAEA-TECDOC-1162. 2000.
  32. Muramatsu Y, Matsuzaki H, Toyama C, Ohno C. Analysis of $^{129}I$ in the soils of Fukushima prefecture: preliminary reconstruction of $^{131}I$ deposition related to the accident at Fukushima Daiichi nuclear plant (FDNPP). J. Environ. Radioact. 2015;139:344-350. https://doi.org/10.1016/j.jenvrad.2014.05.007
  33. Nuclear Regulation Agency. Report on Radioactive Substance Distribution Mapping Project in FY2014. 2015. (in Japanese) https://radioactivity.nsr.go.jp/ja/contents/10000/9735/35/1-9_I131.pdf
  34. Saito K, et al. Summary of temporal changes in air dose rates and radionuclide deposition densities in the 80 km zone over five years after the Fukushima Nuclear Power Plant accident. J. Environ. Radioact. 2019;210:105878. https://doi.org/10.1016/j.jenvrad.2018.12.020
  35. Andoh M, Mikami S, Tsuda S, Yoshida T, Matsuda N, Saito K. Decreasing trend of ambient dose equivalent rates over a wide area in eastern Japan until 2016 evaluated by car-borne surveys using KURAMA Systems. J. Environ. Radioact. 2018;192:385-398. https://doi.org/10.1016/j.jenvrad.2018.07.009
  36. Sanada Y, Urabe Y, Sasaki M, Ochi K, Torii T. Evaluation of ecological half-life of dose rate based on airborne radiation monitoring following the Fukushima Daiichi nuclear plant accident. J. Environ. Radioact. 2018;192:417-425. https://doi.org/10.1016/j.jenvrad.2018.07.016
  37. Yoshimura K, Saito K, Fujiwara K. Distribution of $^{137}Cs$ on components in urban area four years after the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2017;178-179:48-54. https://doi.org/10.1016/j.jenvrad.2017.07.021
  38. Meckbach R, Jacob P. Gamma exposures due to radionuclides deposited in urban environments. Part II: location factors for different deposition patterns. Radiat. Prot. Dosim. 1988;25(3):181-190.
  39. Andersson KG, Roed J, Fogh CL. Weathering of radiocaesium contamination on urban streets, walls and roofs. J. Environ. Radioact. 2002;62(1):49-60. https://doi.org/10.1016/S0265-931X(01)00150-3
  40. Ministry of Agriculture Forestry and Fisheries of Japan. Monitoring results of ambient dose rate in forest of Fukushima Prefecture. In Japanese. 2011. http://www.rinya.maff.go.jp/j/press/hozen/111227_3.html, Accessed date: 1 July 2017.
  41. Kato H, Onda Y, Yamaguchi T. Temporal changes of the ambient dose rate in the forest environments of Fukushima Prefecture following the Fukushima reactor accident. J. Environ. Radioact. 2018;193-194:20-26. https://doi.org/10.1016/j.jenvrad.2018.08.009
  42. Yoshimura K, Onda Y, Kato H. Evaluation of radiocaesium washoff by soil erosion from various land uses using USLE plots. J. Environ. Radioact. 2015;139:362-369. https://doi.org/10.1016/j.jenvrad.2014.07.019
  43. Wakiyama Y, Onda Y, Yoshimura K, Igarashi Y, Kato H. Land use types control solid wash-off rate and entrainment coefficient of Fukushima-derived $^{137}Cs$, and their time dependence. J. Environ. Radioact. 2019;210:105990. https://doi.org/10.1016/j.jenvrad.2019.105990
  44. Okumura M, Kerisit S, Bourgc IC, Lammersd LN, Ikeda T, Sassi M, Rosso KM, Machida M. Radiocesium interaction with clay minerals: Theory and simulation advances Post-Fukushima. J. Environ. Radioact. 2018;189:135-145. https://doi.org/10.1016/j.jenvrad.2018.03.011
  45. Nuclear Regulation Agency. Report on Radioactive Substance Distribution Mapping Project in FY2017. 2018.
  46. Takahashi J, Onda Y, Hihara D, Tamura K. Six-year monitoring of the vertical distribution of radiocesium in three forest soils after the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2018;192:172-180. https://doi.org/10.1016/j.jenvrad.2018.06.015
  47. Kato K, Onda Y, Hisadome K, Loffredo N, Kawamori A. Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2017;166(3):449-457. https://doi.org/10.1016/j.jenvrad.2015.04.016
  48. Kato K, Onda Y, Saidin ZH, Sakashita W, Hisadome K, Loffredo N. 2018a. Six-year monitoring study of radiocesium transfer in forest environments following the Fukushima nuclear power plant accident. J. Environ. Radioact. 2019;210:105817. https://doi.org/10.1016/j.jenvrad.2018.09.015
  49. Iwagami S, Onda Y, Tsujimura M, Abe Y. Contribution of radioactive $^{137}Cs$ discharge by suspended sediment, coarse organic matter, and dissolved fraction from a headwater catchment in Fukushima after the Fukushima Dai- ichi Nuclear Power Plant accident. J. Environ. Radioact. 2017;166(3):466-473. https://doi.org/10.1016/j.jenvrad.2016.07.025
  50. Taniguchi K, Onda Y, Smith HG, Blake WH, Yoshimura K, Yamashiki Y, Kuramoto T, Saito K. Transport and redistribution of radiocaesium in Fukushima fallout through rivers. Environ. Sci. Technol. 2019:53(21):12339-12347. https://doi.org/10.1021/acs.est.9b02890
  51. Funaki H, Yoshimura K, Sakuma K, Iri S, Oda Y. Evaluation of particulate $^{137}Cs$ discharge from a mountainous forested catchment using reservoir sediments and sinking particles. J. Environ. Radioact. 2018;189:48-56. https://doi.org/10.1016/j.jenvrad.2018.03.004
  52. Iwagami S, Onda Y, Sakashita W, Tsujimura M, Satou Y, Konuma R, Nishino M, Abe Y. Six-year monitoring study of $^{137}Cs$ discharge from headwater catchments after the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2019;210:106001. https://doi.org/10.1016/j.jenvrad.2019.106001
  53. Iwagami S, et al. Temporal changes in dissolved $^{137}Cs$ concentrations in groundwater and stream water in Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2017;166(3):458-465. https://doi.org/10.1016/j.jenvrad.2015.03.025
  54. Saito K, Petoussi-Henss N, Zankl M. Calculation of the effective dose from environmental gamma ray sources and its variation. Health Phys. 1998;74(6):698-706. https://doi.org/10.1097/00004032-199806000-00007
  55. Ministry of Environment. Environmental remediation. http://josen.env.go.jp/en/
  56. Kinase S, Sato S, Takahashi T, Sakamoto R, Saito K. Ecological Half-life of Radioactive Caesium within the 80 km Radius of the Fukushima Daiichi Nuclear Power Plant. IRPA2014 Abstract Book. 2014:163-166.
  57. Kinase S, Takahashi T, Saito K. Long-term prediction of ambient dose equivalent rates after the Fukushima Daiichi nuclear power plant accident. J. Nucl. Sci. Technol. 2017;54(12):1345-1354. https://doi.org/10.1080/00223131.2017.1365659
  58. Bunzl, K. Transport of fallout radiocesium in the soil by bioturbation: a random walk model and application to a forest soil with a high abundance of earthworms. Sci. Total Environ. 2002;293(1-3):191-200. https://doi.org/10.1016/S0048-9697(02)00014-1
  59. Gale HL, Humphreys DLO, Fisher EMR. Weathering of caesium-137 in soil. Nature. 1964;201(4916):257-261. https://doi.org/10.1038/201257a0
  60. Murakami-Wainwright H, Seki A, Mikami S, Saito K. Characterizing regional-scale temporal evolution of air dose rates after the Fukushima Daiichi Nuclear Power Plant accident. J. Environ. Radioact. 2018;189:213-220. https://doi.org/10.1016/j.jenvrad.2018.04.006
  61. Xudong L, Machida M, Saito K, Tanimura N. Investigation on distribution of radioactive substances in Fukushima (4) Study on ecological half-lives of ambient dose rates using car-borne survey data with fused LASSO algorithm. Atomic Energy Society of Japan 2019 Fall meeting. Japan. September 11, 2019.
  62. Masoudi P, Coz ML, Cazala C, Saito K. Spatial properties of soil analyses and airborne measurements for reconnaissance of soil contamination by $^{137}Cs$ after Fukushima nuclear accident in 2011. J. Environ. Radioact. 2019;202:74-84. https://doi.org/10.1016/j.jenvrad.2018.11.014
  63. Chino M, Terada H, Nagai H, Katata G, Mikami S, Torii T, Saito K, Nishizawa Y. Utilization of $^{134}Cs/^{137}Cs$ in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident. Sci. Rep. 2016;6:31376. https://doi.org/10.1038/srep31376
  64. Japan Atomic Energy Agency. Estimation of fuel compositions in Fukushima-Daiichi nuclear power plant, JAEA Data/Code 2012-018;2012 (in Japanese).
  65. Kobayashi S, Shinomiya T, Ishikawa T, Imaseki H, Iwaoka K, Kitamura H, Kodaira S, Kobayashi K, Oikawa M, Miyaushiro N, Takashima Y, Uchihori Y. Low $^{134}Cs/^{137}Cs$ ratio anomaly in the northnorthwest direction from the Fukushima Dai-ichi Nuclear Power Station. J. Environ. Radioact. 2017;178-179:84-94. https://doi.org/10.1016/j.jenvrad.2017.07.023
  66. Onda Y, Kato H, Hoshi M, Takahashi Y, Nguyen ML. Soil sampling and analytical strategies for mapping fallout in nuclear emergencies based on the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2015;139:300-307. https://doi.org/10.1016/j.jenvrad.2014.06.002
  67. International Atomic Energy Agency. Guidelines on soil and vegetation sampling for radiological monitoring. IAEA Technical report series No. 486. 2019.
  68. Mikami S, Ishikawa D, Matsuda H, Hoshide Y, Okuda N, Sakamoto R, Saito K. Guidance for in situ gamma spectrometry intercomparison based on the information obtained through five intercomparisons during the Fukushima mapping project. J. Environ. Radioact. 2019;201:105938.
  69. Naito W, Uesaka M, Yamada C, Kurosawa T, Yasutaka T, Ishii H. Relationship between Individual External Doses, Ambient Dose Rates and Individuals' Activity-Patterns in Affected Areas in Fukushima following the Fukushima Daiichi Nuclear Power Plant Accident. PLoS One. 2016;11(8):e0158879. https://doi.org/10.1371/journal.pone.0158879
  70. Saito K, Ishigure N, Petoussi-Henss N, Schlattl H. Effective dose conversion coefficients for radionuclides exponentially distributed in the ground. Radiat. Environ. Biophys. 2012;51(4):411-423. https://doi.org/10.1007/s00411-012-0432-y
  71. Saito K, Petoussi-Henss N. Ambient dose equivalent conversion coefficients for radionuclides exponentially distributed in the ground. J. Nucl. Sci. Technol. 2014;51(10):1274-1287. https://doi.org/10.1080/00223131.2014.919885
  72. Satoh D, Furuta T, Takahashi F, Endo A, Choonsik L, Bolch WE. Age-dependent dose conversion coefficients for external exposure to radioactive cesium in soil. J. Nucl. Sci. Technol. 2016;53(1):69-81. https://doi.org/10.1080/00223131.2015.1021286
  73. Sato T, Andoh M, Sato M, Saito k. External dose evaluation on detailed air dose rate measurements in living environments. J. Environ. Radioact. 2019;210:105973. https://doi.org/10.1016/j.jenvrad.2019.05.005
  74. Takahara S, Iijima M, Watanabe M. Assessment model of radiation doses from external exposure to the public after the Fukushima Dai-ichi Nuclear Power Plant accident. Health Phys. (accepted).
  75. Ishikawa T, Yasumura S, Ozasa K, Miyazaki M, Hosoya M, Akahane K, Yonai S, Ohtsuru A, Sakai A, Sakata R, Kurihara O, Kobayashi G, Ohira T, Kamiya K. External dose estimation in an early stage after the Fukushima Daiichi Nuclear Power Plant accident. Hoken Butsuri. 2018;53(2):100-110. https://doi.org/10.5453/jhps.53.100
  76. International Atomic Energy Agency, Planning for off-site response to radiation accidents in nuclear facilities. IAEA-TECDOC-225, 1979.
  77. Yoshida-Ohuchi H, Hosoda M, Kanagami T, Uegaki M. Tashima H. Reduction factors for wooden houses due to external ${\gamma}$-radiation based on in situ measurements after the Fukushima nuclear accident. Sci. Rep. 2014;4:7541. https://doi.org/10.1038/srep07541
  78. Matsuda N, Mikami S, Tetsuro Sato, Kimiaki Saito. Measurements of air dose rates in and around houses in the Fukushima Prefecture in Japan after the Fukushima accident. J. Environ. Radioact. 2019;166:427-435. https://doi.org/10.1016/j.jenvrad.2016.03.012
  79. Yoshida-Ohuchi H, Matsuda N, Saito K. Review of reduction factors by buildings for gamma radiation from radiocaesium deposited on the ground due to fallout. J. Environ. Radioact. 2018;187:32-39. https://doi.org/10.1016/j.jenvrad.2018.02.006
  80. Furuta T, Takahashi F. Study of radiation dose reduction of buildings of different sizes and materials. J. Nucl. Sci. Technol. 2015;52(6):897-904. https://doi.org/10.1080/00223131.2014.990939
  81. Kim M, Malins A, Yoshimura K, Sakuma K, Kurikami H, Kitamura A, Machida M, Hasegawa Y, Yanagi H. Simulation study of the effects of buildings, trees and paved surfaces on ambient dose equivalent rates outdoors at three suburban sites near Fukushima Dai-ichi. J. Environ. Radioact. 2019;210:105803. https://doi.org/10.1016/j.jenvrad.2018.09.001
  82. Nuclear Regulation Agency. Extension site of distribution map of radiation dose, etc. 2011. https://ramap.jmc.or.jp/map/eng/#lat=36.64488820270616&lon=141.81220643795731&z=8&b=std&t=air&s=0,0,0,0&c=20181115_dr (accessed)
  83. Seki A, Takemiya H, Takahashi F, Saito K, Tanaka K, Takahashi Y, Takemura K, Tsuzawa M. Development of radionuclide distribution database and map system on the Fukushima nuclear accident. Prog. Nucl. Sci. Technol. 2014;4:47-50. https://doi.org/10.15669/pnst.4.47
  84. Nuclear Regulation Agency. Monitoring information of environmental activity level. https://radioactivity.nsr.go.jp/en/
  85. Seki A, Saito O, Nago H, Suzuki K, Tomishima K, Saito K, Takemiya H. Development of a software platform for providing environmental monitoring data for the Fukushima Daiichi nuclear accident. Radiat. Prot. Dosim. 2015;164(1-2):97-102. https://doi.org/10.1093/rpd/ncu355
  86. Japan Atomic Energy Agency. Database for radioactive substance monitoring data. https://emdb.jaea.go.jp/emdb/en/
  87. Itow Y. Meta-data base system for radiation monitoring data for Fukushima Dai-ichi Reactor accident. Makuhari Messe, JpGUAGU Joint Meeting 2017. Japen. May 25, 2017.
  88. Japen Atomic Energy Agency. Comprehensive evaluation system for environmental remediation of Fukushima - Toward integration of three components as a whole system. JAEA-Review 2017-040. 2017 (in Japanese).
  89. Japan Atomic Energy Agency. Base Information Q&A site. (in Japanese) https://fukushima.jaea.go.jp/QA/index.html

Cited by

  1. Individual Doses to the Public after the Fukushima Nuclear Accident vol.45, pp.2, 2019, https://doi.org/10.14407/jrpr.2020.45.2.53
  2. Radionuclides from the Fukushima Daiichi Nuclear Power Plant in terrestrial systems vol.1, pp.12, 2019, https://doi.org/10.1038/s43017-020-0099-x
  3. 후쿠시마 제1 원전 주변 지역의 KOMPSAT-3/3A 영상 기반 지표반사도 적용 식생지수 변화 vol.37, pp.6, 2019, https://doi.org/10.7780/kjrs.2021.37.6.3.10