• Title/Summary/Keyword: powder admixture

Search Result 148, Processing Time 0.026 seconds

The High-Strengthening of Concrete with Admixture - On the Artificial Lightweight Aggregate Concrete- (혼화재에 의한 콘크리트의 고강도화에 관한 실험 연구(II) -인공경량골재 콘크리트를 대상으로-)

  • 김화중;김태섭;이용철;박정민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.118-123
    • /
    • 1993
  • The purpose of this study is to put to practical use the economical high-strength lightweight concrete manufactured by domestic materials, through the analysis on the properties of lightweight concrete with the natural zeolite and mud stone abundant in domestic and compare them with those with silica fume. As a result, it was possible to gain proper workability in the lightweight concrete with admixtures through using the superplasticizer. the optimum replacement rate of zeolite and mud stone powder is respectively 5~10%, 10~15% on unit-cement amount. The strength development rate for plain concrete is 27%, 18% at optimum replacement rate.

  • PDF

An Experimental Study on Physical Properies of Concrete with Packaged Dry Combined Materials (건식혼합 포장 콘크리트의 물리적 특성에 관한 실험적 연구)

  • Han, Da-hee;Park, Hee-Gon;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.2 s.16
    • /
    • pp.131-138
    • /
    • 2005
  • Most concrete is recently made of an aggregate which is properly absorbed, and carried in it in order to do capability at every fields. We have been close to demand new rapability of high flowing and enduring for specific concretes. That is difficult to cope with claiming the efficiency on deterioration from lack of a high quality aggregate. Therefore, For solving the problems we apply to a packing method for using dried materials. That is to say that it is a kind of making into an instant. In this study. There is a purpose to present fundamental data, comparing and analyzing a phenomenon of aggregate's absorption following the rate of adding water, for using existing materials.

Evaluation on the Compressive Strength of the Ground Granulated Blast-Furnace Slag Mortar with the Curing Temperature (양생온도에 따른 고로슬래그 미분말 모르타르의 압축강도 평가)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Shin, Kyoung-Su;Koo, Kyung-Mo;Choe, Gyeong-Cheol;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.257-258
    • /
    • 2012
  • With regard to the carbon reduction that has become an international problem, we have examined the effects of compressive strength of the ground granulated blast-furnace slag mortar with the curing temperature. Also, we evaluated the mechanical properties of steel slag powder produced during the steelmaking process in order to examine the possibility as admixture.

  • PDF

Study on the Field Application of Insulation Performance Improvement Concrete (단열성능 향상 콘크리트의 현장 적용성 평가에 관한 연구)

  • Kang, Sung-Hyuk;Kim, Jung-Ho;Choo, Kyoung-Nam;Park, Young-Shin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.17-18
    • /
    • 2014
  • Recently, climate change have increased consumption of building heating and cooling energy. Therefore, various actions to reduce greenhouse gas and energy consumption have been prepared by world developed countries. The energy consumption by buildings approximately reaches 25% of total korea energy consumption. The greatest part in the buildings of the energy consumption is building facade. Especially the outer covering of the building has been made of concrete more than 70%. But a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research is structural insulation concrete what improved insulation performance using Micro Form Admixture and Calcined Diatomite Powder and Lightweight Aggregate.

  • PDF

A Fundamental Study on Method of Packaged Dry Combined Materials for Concrete using Powder Admixture - based on tests for hardened concrete (분말혼화제를 사용한 콘크리트 포장화에 관한 기초적 연구 - 굳은 콘크리트 시험 중심으로 -)

  • Han Da Hee;Son young Jun;Jung Kwang Sic;Park Hee Gon;Lee Young Do;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.153-156
    • /
    • 2004
  • Most concrete is recently made of an aggregate which is properly absorbed. and carried in it in order to do capability at every fields. We have been close to demand new capability of high flowing and enduring for specific concretes. That is difficult to cope with claiming the efficiency on deterioration from lack of a high quality aggregate. Therefore. For solving the problems we apply to a packing method for using dried materials. That is to say it is a kind of making into an instant. In this study. There is a purpose to present fundamental data. comparing and analyzing a phenomenon about aggregate's absorption following the rate of adding water. for using existing materials.

  • PDF

Study on the Thermal Characteristics of Concrete Using Insulation Performance Improve Material (단열성능향상 재료를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young-Shin;Kim, Jung-Ho;Kang, Yeun-Woo;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.227-228
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. The energy consumption by buildings approximately reaches 25% of total korea energy consumption. The greatest part in the buildings of the energy consumption is building facade. but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research structural insulation concrete what improved insulation performance using insulation performance improve material.

  • PDF

Exmination of Rheological Properties on Cement Paste of High-Blaine Blast Furnace Slag Fineness (고미분말 고로슬래그의 치환율 변화에 따른 시멘트 페이스트의 레올로지 성질 검토)

  • Lim, Ji-Hee;Lee, Gun-Cheol;Yoon, Seung-Joe
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.186-187
    • /
    • 2013
  • Recently, high fluidity concrete is becoming more prevalent. High fluidity concrete uses admixture or thickener in order to prevent separation of materials due to increased fluidity, and, especially, BS is becoming more use for reduced heat of hydration and improved long-term strength. This study examined the effect of BS on fluidity of cement paste from a rheological viewpoint. As for BS types, materials equivalent to 1 types of KS F 2563 and the cement mass was substituted by 20, 40, 60, 80%.

  • PDF

An Experimental Study on the Neutralization of High-Flowable Concrete (고유동콘크리트의 중성화에 관한 실험적 연구)

  • Jeon, Hyun-Kyu;Lim, Jin-Kyu;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.177-185
    • /
    • 1999
  • In this study, study about fly ash and blast-furnace slag used as substitutive materials for cement, and the influence on the neutralization of high flow concrete durability with these substitutive materials was performed and analyzed. The results are as follows 1) Aggregate segregation was partially improved with the progress of the admixture input at the mix proportion above slump flow 65 cm 2) Compressive strength with the progress of the increasement of fly ash input was decreased in early age, but decrease range was improved in long term age. Also, in case of blast-furnace, similar or improved compressive strength was appeared. 3) The neutralization depth with fly ash input was noticeably increased. But blast-furnace slag was effective to prevent. 4) In this experiment, high powder content was advantageously affected on preventive effect of the neutralization, and the relationship between the compressive strength and the neutralization depth was inversely proportional.

  • PDF

Comparison of National Standards for Blast Furnace Slag and Fly Ash between Korea and China (한국과 중국간의 고로슬래그 미분말 및 플라이 애시의 품질 규정 비교)

  • Hu, Yun-Yao;Lim, Gun-Su;kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.63-64
    • /
    • 2022
  • In this study, the quality of mineral admixture, Comparison of blast-furnace slag(BS) and fly ash(FA)in Korea and China. In the case of BS, Korea is mainly classified into 1 type to 4 types according to the specific surface area, whereas China is classified into S105, 95, and 75 according to the activity index of 28 days of age. In the case of FA, Korea is like BS, is mainly classified into types 1 to 4 according to specific surface area, whereas China is classified into F, C (class F, class C) by ingredients and class I, II, and III according to powder and ignition loss.

  • PDF

Fluidity of Cement Paste and Fluidity and Compressive Strength of Cement Mortar Substituted by Pozzolanic fine Powders and II-Anhydrite (포졸란계 미분말과 ∥ 형 무수석고 치환 시멘트 페이스트 유동성과 시멘트 모르타르의 유동성 및 압축강도)

  • 노재성;이범재;김도수;이병기
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.149-156
    • /
    • 1997
  • In order to improve compressive strength of cement mortar, powder admixture(FAS) was mmufactured by mixing fly ash. Il-anhydite and silica hume, and superplasticizer was used for the control of fluidity reduction with the use of this admixture. Cement was substituted by 10, 20wt% of FAS respectively. At W/S = 0.40, the fluidity of' cement paste substituted by PAS was decreased. NSF and NT-2 were very effective fbr the control of fluidity reduction. As the particle size of U -anhydrite was fine, the fluidity of cement mortar was increased. The fluidity reduction of cement mortar substituted by 10wt% of FAS was controlled. The compressive strength of cement mortar substituted by 10wt% of FAS showed higher. value than that of 20wt%, expecially specimen(C1) substituted by 10wt% of $\gamma$ had the highest compressive strength value.