• Title/Summary/Keyword: posture discomfort

Search Result 92, Processing Time 0.021 seconds

The Study Used Brog's Scale on the Lower Extremity Supporter (주관적 작업부하를 이용한 하체 서포터 평가에 관한 연구)

  • Kim, Yu-Chang;Chang, Eon-June
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.105-110
    • /
    • 2008
  • This study focused on the decreased effect of the work load on using the lower extremity supporter in kneeling posture. Fatigue measures included subjective discomfort ratings through the use of the Borg's CR-10 scale based parameters. The resting period and work method were considered as independent variables. The break time conditions are grouped into 10 seconds after work for 1 min and not exist break time. The method of work conditions are divided into four types. There are kneeling with the lower extremity supporter, kneeling with the knee protector, just kneeling and squatting. The result of the ANOVA of the shift value of subjective discomfort showed the followings: 1) There were differences as regards to the method of the work, the break time and the part of body($p{\leq}0.05$). 2) The lower extremity supporter showed the least subjective discomfort in other part of body except the upper leg.

Psychophysical cost function of joint movement for arm reach posture prediction

  • 최재호;김성환;정의승
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.561-568
    • /
    • 1994
  • A man model can be used as an effective tool to design ergonomically sound products and workplaces, and subsequently evaluate them properly. For a man model to be truly useful, it must be integrated with a posture prediction model which should be capable of representing the human arm reach posture in the context of equipments and workspaces. Since the human movement possesses redundant degrees of freedom, accurate representation or prediction of human movement was known to be a difficult problem. To solve this redundancy problem, a psychophysical cost function was suggested in this study which defines a cost value for each joint movement angle. The psychophysical cost function developed integrates the psychophysical discomfort of joints and the joint range availability concept which has been used for redundant arm manipulation in robotics to predict the arm reach posture. To properly predict an arm reach posture, an arm reach posture prediction model was then developed in which a posture configuration that provides the minimum total cost is chosen. The predictivity of the psychophysical cost function was compared with that of the biomechanical cost function which is based on the minimization of joint torque. Here, the human body is regarded as a two-dimensional multi-link system which consists of four links ; trunk, upper arm, lower arm and hand. Real reach postures were photographed from the subjects and were compared to the postures predicted by the model. Results showed that the postures predicted by the psychophysical cost function closely simulated human reach postures and the predictivity was more accurate than that by the biomechanical cost function.

Effect of Posture Correction Band on Pulmonary Function in Individuals With Neck Pain and Forward Head Posture

  • Kim, Jae-hyeon;Jeong, Yeon-woo;Kim, Su-jin
    • Physical Therapy Korea
    • /
    • v.27 no.4
    • /
    • pp.278-285
    • /
    • 2020
  • Background: Individuals with forward head posture (FHP) have neck pain. To correct the FHP, a posture correction band is commonly used. However, we do not know the posture correction band influenced the pulmonary function in individuals with FHP. Objects: This study aimed to elucidate the effects of the posture correction band on the pulmonary function in young adults with neck pain and FHP and to monitor how the pulmonary function changed over time. Methods: Twenty subjects with chronic neck pain and forward head posture were recruited. Subjects performed pulmonary function test four times: before, immediately, and 2 hours after wearing the postural band, and immediately after undressing the postural band. Vital capacity (VC), forced vital capacity (FVC), peak expiratory flow (PEF), and forced expiratory volume at one second (FEV1) were measured. The modified Borg dyspnea scale was used to measure each subject's responses to the posture correction band. The mixed-effect linear regression was used to the effect of the posture correction band over time. Results: There were no significant differences in VC, FVC, PEF, FEV1 values over time (p > 0.05), although all values slightly decreased after applying posture correction band. However, the score of the modified Borg scale significantly changed after wearing the postural bands (p < 0.05), indicating the subject felt discomfort with posture correction band during breathing. Conclusion: Because the posture correction band did not change the pulmonary function over time, but it induces psychological discomforts during breathing in people with FHP. Therefore, this posture correction band can be used for FHP realignment after discussion with the subjects.

Evaluation of Varying Shoulder Postures with External Loads using a Psychophysical Method (외부 부하가 부과된 어깨 자세의 심물리학적 불편도 평가)

  • Ryu, Tae-Beum;Park, Young-Ju;Na, Seok-Hee;Chung, Min-K.;Kee, Do-Hyung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.9-15
    • /
    • 2005
  • The purpose of this study is to quantitatively investigate perceived discomfort of complex shoulder postures with external loads and to propose a preliminary evaluation scheme of shoulder postures. Twelve healthy male adults participated in an experiment to rate their perceived discomfort of shoulder postures. The independent variables were shoulder flexion angle(45, 90 and 150$^{\circ}$), adduction/abduction angle(-30, -10, 0, 30 and 60$^{\circ}$), and external load(0, 1.5 and 3.0kg). The results revealed that the flexion angle, external load and their interaction significantly affected the perceived discomfort(p$<$0.05) but the effect of adduction/abduction angle on the discomfort was not significant(p$>$0.05). The effect of external load was much larger than that of any other factor with explaining about 81% of the total variation of discomfort scores. Based on the experimental results a preliminary scheme was presented to evaluate the stress of shoulder postures with external loads.

Clothing Pressure Sensation and Discomfort Experience of Skinny Jean (여대생의 스키니 진 착용 실태 및 주관적 압박감)

  • Na, Young-Joo;Lee, Dong-Wook
    • Korean Journal of Human Ecology
    • /
    • v.19 no.4
    • /
    • pp.655-665
    • /
    • 2010
  • This study analyzed the effects of skinny jean on women's health by questionnaire survey and measuring the pressure experienced under the clothing and participants' subjective view of the pressure level. The average size women in their 20s' waists is 26 inches and so three pairs of jeans were prepared and worn by 4 female participants. A survey was conducted to investigate how often participants wear skinny jeans and whether they had had any feelings of discomfort as a result of this. Participants responded that they hadexperienced middle to high levels of discomfort due to the high pressure inside skinny jeans. For the maximum value of clothing pressures, jean f2 at the part of buttocks showed $48.7gf/cm^2$. The pressure inside the clothing was found to be highest around the buttocks followed by the knees and finally the belly. The mean values of 7 measuring parts are different according to the jean type; f3 $20.8gf/cm^2$ > f2 $16.4gf/cm^2$ > f1 $15.5gf/cm^2$, which is corresponding to the order of pressure sensation, but not corresponding to the order of ease amount of clothing pattern: f2 > f3 > f1. Mean pressure values were also measured according to the body posture: they were found to by highest when sitting on a chair (21.3gf/$cm^2$), second highest when sitting on the floor ($19.2gf/cm^2$) and lowest when standing ($15.0gf/cm^2$). This is not always same to the order of participants subjective perceptions of the pressure, which is, they estimated pressure to be highest when sitting on the floor followed by sitting on a chair and lowest in a standing position.

Comparison of Driving Posture and Sensibility Differences between Transmission Modes and the Position of Pedals (차량의 변속형태에 의한 페달 위치에 따른 운전자세 비교 및 감성차이 분석 연구)

  • Jeon, Yong-Wook;Cha, Doo-Won;Park, Peom
    • Science of Emotion and Sensibility
    • /
    • v.4 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • As a part of HMS(Human-Machine System), the car is very important thing in common life. It is also a significant part to study on the controllers of car that is intentively related with all sensibilities during driving. There are lots of controllers on seating buck of the car. However, there are few study on the sensibility analysis of them. Most of all, the foot controller could be easily overlooked because it could be invisible. This study was based on relationship that the controllers fitted to the driving posture in the drivers' sensibility difference of two transmission modes, automatic and manual transmission. The results show the driver's preference driving posture and sensibility in two kinds of transmission cars. Consequently, it should be designed the seating buck for two different types respectively to be taken comfort driving posture and improve the safety for drivers. Also, it could reduce the fatigue and discomfort in the task of driving. The design of the controllers strongly effects on the drivers' response time. hereby this study was accessed to the sensibility of Korean with analyzing the relationship, quantitative data, and sensibility difference between two kinds of transmission cars.

  • PDF

Human Response to Idle Vibration of Passenger Vehicle Related to Seating Posture (승용차량의 아이들 진동을 고려한 착석자세에 따른 인체의 반응특성 분석)

  • Jeon, Gyeoung-Jin;Kim, Min-Seok;Ahn, Se-Jin;Jeong, Weui-Bong;Yoo, Wan-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1121-1127
    • /
    • 2010
  • Human characteristic responding to idle vibration on passenger vehicle was studied to find if affected by seating posture of passenger. When twelve male subjects are exposed to moderate vertical vibration of 0.224 $m/s^2$ r.m.s. at frequency range from 3 Hz to 40 Hz, it was found that seating posture significantly affects to biodynamical characteristics, apparent mass and apparent eccentric mass, at most range of idle vibration frequency(20~40 Hz). The supported thigh contact on rigid seat showed bigger values in the two biodynamical characteristics than the average thigh contact. The bigger apparent mass and apparent eccentric mass in the seating posture of the supported thigh contact can be assumed more strengthened muscle at the frequency range.

A neck healthy warning algorithm for identifying text neck posture prevention (거북목 자세를 예방하기 위한 목 건강 경고 알고리즘)

  • Jae-Eun Lee;Jong-Nam Kim;Hong-Seok Choi;Young-Bong Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.115-122
    • /
    • 2022
  • With the outbreak of COVID-19 a few years ago, video conferencing and electronic document work have increased, and for this reason, the proportion of computer work among modern people's daily routines is increasing. However, as more and more people work on computers in the wrong posture for a long time, the number of patients with poor eyesight and text neck is increasing. Until recently, many studies have been published to correct posture, but most of them have limitations that users may experience discomfort because they have to correct posture by wearing equipment. A posture correction sensor algorithm is proposed to prevent access to the minimum distance between a computer monitor and a person using an ultrasonic sensor device. At this time, an algorithm for minimizing false alarms among warning alarms that sound at the minimum distance is also proposed. Because the ultrasonic sensor device is used, posture correction can be performed without attaching a device to the body, and the user can relieve discomfort. In addition, experimental results showed that accuracy can be improved by reducing false alarms by removing more than half of the noise generated during distance measurement.

The Analysis of Musle Fatigue for Urban Bus Driver using Electromyography (근전도를 이용한 시내버스 운전자 피로도 분석)

  • Kim, Kyong;Kim, Jae-Jun;Lee, Chan-Ki;Kim, Dong-Won;Kwon, Tae-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.584-590
    • /
    • 2009
  • Since driving include compilcated actions that require a variety of abillity and cause extrme concentration or strain, divers tend to feel tired easiy. However, divers can't recognize fatigue degree by himself and accordingly the methods to measure quantitative fatigue degree exactly is quite difficult to be secured. In this study, the most efficient driving posture was suggested based on the analysis of quantitative muscular strength and fatigue degree according to posture. The driver whom we experimented included 9 commercial bus drivers. We also analyzed quantitative legs' muscular strength according te operating each pedal, left and right then we analyzed muscular strength and muscular fatigue degree according to driving pattern while driving commercial buses. And then we suggested the most efficient driving posture.

  • PDF

Comparison of Observational Posture Evaluation Methods based on Maximum Holding Times (최대 지속 시간에 근거한 관찰적 자세 평가 기법의 평가)

  • Moon, Chanyoung;Na, Seokhee;Kee, Dohyung;Chung, Min K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.4
    • /
    • pp.289-296
    • /
    • 2005
  • This study aims to measure maximum holding times(MHTs) of symmetric and asymmetric whole body postures, and to compare three representative observational methods including OWAS, RULA, REBA, based on the MHTs. An experiment was conducted for obtaining the MHTs, in which hand position was used as experimental variable, and the MHT and subjective discomfort rating as dependent variables. The hand position was defined by the percentage of the shoulder height(%SH), the percentage of the arm reach(%AR) and rotation angle(R). The results showed that three independent variables of %SH, %AR and R significantly affected on the MHTs at ${\alpha}$=0.01, and that the MHTs were negatively linearly related to the discomfort scores of Borg CR10. It was also revealed that OWAS and REBA were less sensitive to postural stress than RULA. In addition, OWAS and REBA underestimated postural load of given postures compared to RULA. Therefore, it is recommended that among the three observational methods investigated in this study, RULA be used for a more precise evaluation of postural load.